n 2n 1是发散还是收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:46:05
考虑an=2^(n^2)/n!a1=2/1=2an+1/an=2^((n+1)^2)/(n+1)!/[2^(n^2))/n!]=2^[(n+1)^2-n^2]/(n+1)=2^(2n+1)/(n+1)
再问:再答:积分不会?再问:这样做对不对啊再答:再问:再问:哥们儿,在不在啊,这个感应电动势方向是怎么判定啊再答:哈哈3年没看了你让我怎么答再问:那为啥你高数都会嘞再答:我学数学的啊再问:果然叼,给跪
收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
假设收敛,可以设a=limsinn,则limsin(n+2)=a.而sin(n+2)-sinn=2cos(n+1)sin1,得lim2cos(n+1)sin1=a-a=0,则limcos(n+1)=0
通项=(-1)/(2n-1)=(-1)×1/(2n-1)把常数-1提出来判断通项为1/(2n-1)的级数就行了因为1/(2n-1)>1/(2n)=0.5×1/n因为通项为1/n的级数是发散的(调和级数
发散.级数其实就是-1/(4n+1),与-1/n的敛散性相同,所以发散再问:用比较审敛法的极限形式,除以-1/n,等于1/4,又因为-1/n发散,所以原级数发散,对吧?再答:没错
如果仅仅是1/(n+1)的话,那它是收敛的.因为当n趋于无穷大时,n+1也是趋于无穷大.那么它的倒数,也就是1/(n+1)就趋于0.
极限绝对值的那个东西除以n分之一为无穷大,下面发散所以上面发散.然后用莱布尼兹可求原级数收敛,故为条件收敛
1.(1)因为|(-1)^n/(2n+3)|=1/(2n+3)>1/(2n+n)=1/3n,而∑1/3n发散,由比较判别法知∑|(-1)^n/(2n+3)|发散;(2)而1/(2n+3)单调递减且li
马上写来,要输入符号再答:sin(nπ+1/lnn)=(-1)^nsin(1/lnn)由于limnsin(1/lnn)=limn(1/lnn)sin(1/lnn)/(1/lnn)=无穷,故级数sin(
是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.
加减的时候,把高阶的无穷小直接舍去如1+1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如1/n*sin(1/n)用1/n^2来代替
利用根式判别法,当n趋于无穷大时,(2^n+n)/(3^n-n)的n次方根的极限为2/3
不对,∫1/x^2dx=-1/x+C很明显1/x^2在0-1的积分是发散的再问:谢谢回答,你能回答下第一个积分吗?
这个级数是收敛的,而且由于是正数,还是绝对收敛的,因为ln(n+1)比n小很多,就是说它的增长速度非常小,(lnn)/n趋于0当n趋于无穷时,可以把原式除以1/n^2,这个是收敛的,而且比值是0,所以
条件收敛再答:再答:请采纳吧