角A=70.BP.CP分别平分角ABC和角ACB.求角P的度数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:59:11
∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC/2
根据三角形外角的性质,有∠ACD=∠A+∠ABC,∠PCD=∠P+∠PBC而,BP、CP分别是∠ABC、∠ACD的平分线,即有,∠PBC=(1/2)*∠ABC,∠PCD=(1/2)*∠ACD代入化简得
如下:∠ACD=∠ABC+∠A=∠ABC+70°∠PCD=1/2*∠ACD=1/2*∠ABC+35°∠PCD=∠PBC+∠P∠PBC+∠P=1/2*∠ABC+35°∠P=35°
∠BPC+∠PBC+∠PCB=180∠BPC+1/2∠ABC+1/2∠ACB=180(1)∠A+∠ABC+∠ACB=1801/2∠A+1/2∠ABC+1/2∠ACB=90(2)(1)—(2)得:∠BP
设∠ABP=∠CBP=∠1,∠ACP=∠BCP=∠2,由△ABC:∠A=180°-2∠1-2∠2(1)由△PBC:∠BPC=∠P=180-∠1-∠2(2)(2)×2-(1)得:2∠P-∠A=180°∴
∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC/2
/>∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC
∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC/2
/>∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC
证明:过点P作PM⊥AB于M,PN⊥AC于N,PG⊥BC于G∵PM⊥AB,PG⊥BC,BP平分∠CBD∴PM=PG∵PN⊥AC,PG⊥BC,CP平分∠BCE∴PN=PG∴PM=PN∴AP平分∠BAC
∠PCD为△PBC外角,故①∠PCD=∠PBC+∠BPC∠ACD为△ABC外角,故②∠ACD=∠ABC+∠BAC将①式乘以2得2∠PCD=2∠PBC+2∠BPC...③其中2∠PCD=∠ACD.④2∠
∠A=50,所以∠ABC+∠ACB=130∠ACP=1/2(180-∠ACB)=90-∠ACB/2∠P=180-∠PBC-(∠ACB+∠ACP)因为∠PBC=∠ABC/2所以∠P=180-∠ABC/2
关系:∠BPC=90°+1/2∠A证明:在ABC中,∠ABC和∠ACB的平分线相交于点P所以∠BPC=180°-(∠PBC+∠PCB)=180°-(1/2∠ABC+1/2∠ACB)=180°-1/2(
在BC延长线上取点E∵∠A+∠ABC+∠ACB=180∴∠ABC+∠ACB=180-∠A∵∠ACE=180-∠ACB,CP平分∠ACE∴∠PCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB
∠ACM=∠A+ABC∠PCM=∠P+∠PBC已知∠ABC=2∠PBC∠ACM=2∠PCM则2∠PCM=∠A+ABC=∠A+2∠PBC=∠A+2∠PCM-2∠P可求∠A=∠P再问:∠A=∠P?
∵∠BCP=12∠BCE=12(∠A+∠CBA),∠CBP=12∠CBD=12(∠A+∠ACB);(角平分线的定义及三角形的一个外角等于与它不相邻的两个内角的和)∴∠BCP+∠CBP=∠A+12(∠C
∵∠A=86°,∴∠ABC+∠ACB=94°又∵BP平分∠ABC,CP平分∠ACB∴∠PBC=1/2∠ABC,∠PCB=1/2∠ACB.∴∠PBC+∠PCB=1/1(∠ABC+∠ACB)=47°.∴∠
根据三角形外角的性质,有∠ACD=∠A+∠ABC,∠PCD=∠P+∠PBC而,BP、CP分别是∠ABC、∠ACD的平分线,即有,∠PBC=(1/2)*∠ABC,∠PCD=(1/2)*∠ACD代入化简得
如果我没画错的话由题意得∠MBP=∠CBP,∠BCP=∠NCP,∠BAP=∠CAP=a/2∴∠BPC=360°-∠ABP-∠BAC-∠ACP=360°-(180°-∠PBM)-a-(180°-∠PCN
过P依次向AB、BC、CD、AD作垂线,垂足依次为E、F、G、H.∵AP平分∠BAD、PH⊥AH、PE⊥AE,∴PH=PE,又AP=AP,∴Rt△PAH≌Rt△PAE,∴AH=AE.······①∵P