角ABC中D为AB的中点AD等于5cm角B等于角C,BC等于8cm
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:04:51
证明:过点C作CH∥AD交BA延长线于H∵AD平分∠BAC∴∠BAD=∠CAD∵EF∥AD∴∠AGE=∠BAD,∠AFG=∠CAD∴∠AGE=∠AFG∴AG=AF∵BH∥AD∴∠H=∠BAD,∠ABH
因为AB=AC,所以为等腰直角三角形所以AD=AB×sin45°=1
下面全部表示向量:AD=(AB+AC)/2,(用平行四边形可说明),BE=(BA+BC)/2,CF=(CA+CB)/2,三式相加,AD+BE+CF=(AB+AC)/2+(BA+BC)/2+(CA+CB
∵E、F分别是AB、AC的中点∴EF∥BC∴∠FDC=∠BCD又∵CD平分∠BCA∴∠FDC=∠FCD∴DF=FC=FA∴∠ADC=90°即AD⊥DC
有图吗,楼主再问:ͼ�Լ���
延长AD至BC,和BC交于F点.则有∠ADC=∠FDC=90度,且∠ACD=∠DCF;所以三角形ACD与三角形FDC是相等三角形.所以AD=DF,AC=CFBC-AC=BC-CF=FB我们已知AE=E
证明:∵PA=AB,∴AD⊥PB,∵PA⊥平面ABC∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB∴BC⊥平面AD∴AD⊥平面PBC,∴AD⊥PC
过B作BF//AE交PC于F.DE是△BCF的中位线,BF=2DE.由于AE=AD+DE=3DE,故BF=2/3AE.故△PBF与△PAE相似比为2/3.因此PB=2/3PA.AB=PA-PB=PA-
延长CD交AB延长线于G因为∠BAD=∠CADAD=AD∠ADG=∠ADC=90°所以△ADG≌△ACD所以CD=DG,AC=AG因为CE=BE所以得出CE:CB=CD:CG=1:2根据中位线的相关定
∵E、F分别为AB、AC的中点∴EF‖BC∵CD平分角BCA交EF于D∴角BCD=角FCD=角FDC∴DF=CF=AF∴AD垂直DC
取AB的中点E,连接DE、EM.因为,DE是Rt△ABD斜边上的中线,所以,DE=BE=(1/2)AB,可得:∠BDE=∠B.因为,EM是△ABC的中位线,所以,EM‖AC,可得:∠DME=∠C.因为
取AC中点N,连接DN,MN,MN=1/2AB,
延长AD到E,连BC,根据对角线互相平分的四边形是平行四边形,得到abec是平行四边形,则AC=BE=13,由于ab=5,ae=6*2=12,所以根据勾股逆定理,三角形ABE是直角三角形,所以AB垂直
因为AD平分角BAC所以角BAD=角DAC又因为D是BC中点所以BD=BC又因为AD是公共边所以三角形ABD全等于三角形ACD所以AB=AC
延长BP交AC于点F,∵AD为∠BAC的平分线,∴∠BAP=∠FAP,∵BP⊥AD于D,∴∠APB=∠APF=90°,在△APB和△APF中,∵∠BAP=∠FAPAP=AP∠APB=∠APF=90°,
取AB中点N,连接DN、MN.因为,MN是△ABC的中位线,所以,MN‖AC,可得:∠DMN=∠C.因为,DN是Rt△ABD斜边上的中线,所以,DN=BN=(1/2)AB,可得:∠BDN=∠B.因为,
由于PA⊥面ABC则PA⊥BC而BC⊥AB则BC⊥面PAB即:BC⊥AD又有AP⊥AB且PA=AB则△PAB为等腰直角三角形,AD⊥PB加上前面AD⊥BC即:AD⊥面PBCCD在面PBC上即:AD⊥C
在△ABC中.∠B=∠C∴AB=AC=6∵AD⊥BC在Rt△ADC中.E为AC的中点∴DE=1/2AC=1/2*6=3(直角三角形中,斜边上的中线等于斜边的一半)
一组邻边相等的平行四边形是菱形所以当AF=AE时,四边形AEDF是菱,因为AF=1/2AC,AE=1/2AB,所以当AB=AC时,四边形AEDF是菱,也就是当三角形ABC是等腰三角形时,四边形AEDF