解微分方程dy dx (2-3x^2) x^3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:13:30
由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)
dy/dx=y/[2(lny-x)]2lnydy-xdy=ydxlny^2dy=2xdy+ydxylny^2dy=2xydy+y^2dx1/2lny^2dy^2=d(xy^2)1/2d(y^2lny^
e^x(y''+y')=x^2e^x(y'e^x)'=x^2e^x两边积分:y'e^x=∫x^2e^xdx=x^2e^x-∫e^x*2xdx=x^2e^x-2xe^x+2∫e^xdx=x^2e^x-2
这个不是方程!但这个式子是可以化简的,也可以积分∵d(x³)=3x²dx∴3x²/(1+x³)dx=d(x³)/(1+x³)=d(1+x&s
y'+y=x²这是一阶线性微分方程,设u=u(x),使方程左边=d(uy)/dxuy'+uy=x²则由于乘法法则u'=du/dx=u分离变量积分du/u=dxu=e^x(ye^x)
y'=2x两边积分得y=x^2+C原函数有无穷多个啊再问:能够把两边积分的具体步骤写出来吗 我还想问一下∫dy=∫2xdx吗我觉得不等啊再答:晕这个是积分法则,是由y'=2x来的再问:什么啊我没看懂能
令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³
特征方程λ0=3,λ1=-1令y=Ax+B,代人y"-2y'-3y=2x+1-2A-3Ax-3B≡2x+1A=-2/3,B=1/9通解为:y=C1e^3x+C2e^-x-2x/3+1/9,C1,C2为
我把方法跟你说一下,第一题,移项,2=[(x^3)(y-1)-x]dy/dx,所以dy/dx=2/[(x^3)(y-1)-x],dx/dy=[(x^3)(y-1)-x]/2,把x看成y,y看成x,所以
本题r=1,对应二阶齐次特征方程λ^2-3λ+2=0特征根:λ1=1,λ2=2对应齐次的通解为:Y*=c1e^x+c2e^(2x)(c1、c2为常数)r=1是特征方程的一个解.设所求特解为y=cxe^
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
xdy+ydx-(x^2+3x+2)dx=0设dz(x,y)=xdy+ydx-(x^2+3x+2)dx∂z/∂y=x,z=xy+g(x),∂z/∂x=y
dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.
原式两边乘以x^2得x^2e^xdx+3x^2y^2dx+2x^3ydy=0x^2e^xdx+dx^3y^2=0x^2e^xdx=-dx^3y^2两边积分得∫x^2e^xdx=-∫dx^3y^2x^2
(常数变易法)∵y'+2xy=0==>dy/y=-2xdx==>ln│y│=-2x²+ln│C│(C是积分常数)==>y=Ce^(-x²)∴设微分方程y'+2xy+2(x^3)=0
再答:诚邀您加入百度知道团队“驾驭世界的数学”。
令u=e^y,则y=lnu,dy/dx=1/u*du/dx所以1/u*du/dx=(u+3x)/x^2x^2u'=u^2+3xuu'=(u/x)^2+3u/x令v=u/x,则u'=v+xv'v+xv'
令x=m+3/2,y=n-5/4,则dx=dm,dy=dn代入原方程,得2mdn=(m+2n)dm.(1)令n=mt,则dn=mdt+tdm代入方程(1),得2mdt=dm==>dm/m=2dt==>
可以用公式法不过就本题,可以用特殊的技巧显然方程左边=xy'+y=(xy)'=右=x²+3x+2两边积分有xy=x³/3+3x²/2+2x+C所以y=x²/3+