解矩阵方程 XA=B 用列变换
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:35:13
设题目是AXB=CA是X左边的矩阵B是右边的矩阵C是等号右边的矩阵A左乘X是交换X的行位置B右乘X是交换X的列位置A是E交换了1,2行位置得来,B是E交换了2,3列位置得来,所以:本题把矩阵C第2,3
矩阵方程AX=B,因为A是可逆的,即有:A^(-1)两边左乘A^(-1),有:A^(-1)AX=A^(-1)BX=A^(-1)B这里的A^(-1)相当于以前的某个数的倒数只是这里分左乘和右乘A在左边就
证法昨天不是给过你了吗http://zhidao.baidu.com/question/1957586037790484180.html这已经是最基本的证法了,你应该先去把那些所谓"陌生"的基本结论都
(A^T,B^T)=2211411-1-13-10132r1-2r2,r3+r20033-211-1-1301025r1*(1/3),r2+r1-r30011-2/3100-2-8/301025交换行
(A^T,B^T)=51-5-8-5-23-12719311-21000r1-5r3,r2-3r3011-10-8-5-205-1719311-21000r1-2r201-8-22-43-6405-1
动手啊,如上方程为 XA=B,若|A|≠0,则 X=B*A^(-1)=……
矩阵方程AX=B是造一个矩阵(A|B)然后化成(E|?)?是答案一般情况下,这类矩阵方程中A都是可逆的.解矩阵方程XA=B可用两种方法.一是等式两边求转置得A^TX^T=B^T,用(A^T,B^T)-
两边同时转置:(XA)的转置=B的转置==》“A的转置”乘以“X的转置”=“B的转置”然后同解AX=B的过程,最后得出右边为“X的转置”,再化成X,就是最后答案啦
这不是矩阵方程.AB15128BA=10-4120-34302再问:是这个,我发错了,老师,不好意思,再答:矩阵方程AX=B解:(A,B)=1-20-141-2-125-3121-3r2-r1,r3+
1.AX=B先求出A的逆A^(-1)则X=A^(-1)B2.AX=B对(A,B)进行初等行变换,把它变为行最简形矩阵(E,X)E后面即为X=A^(-1)B
真不是一般的难算 都是书上的啊 简单的 好好搞
两者是相通的,他们和方程AX=B同解.初等行变换法(A,B)最后变换成(E,A^-1B)其实就是(E,X),因为X=A^-1B如果用逆矩阵求出A^-1,则矩阵相乘A^-1*B就是X比较而言前者简单多了
这个题目我解答过了,为什么又来提问是我的解答不好?若对解答有疑问,请用追问功能若已解决,请及时采纳,再问:不是的,你回答的很好,只是我看不懂,能帮再解释一下吗?不好意思啊。谢谢再答:是原理不懂,还是过
(A^T,B^T)=02-3122-132-313-431r2-2r302-3120-711-4-513-431r2+4r102-31201-10313-431r1-2r2,r3-3r200-11-4
解:由X-XA=B得X(E-A)=B((E-A)^T,B^T)=0-231-300-2-24-10411r3*(-1),r2*(-1/2),r1-3r20-20-230011-210-4-1-1r1*
不妨一试:将XA=B两边转置后再做初等行变换.(个人思路)
(A,B)=[138-35][241115][12534]行初等变换为[138-35][0-2-57-5][0-1-36-1]行初等变换为[10-1152][013-61][001-5-3]行初等变换
题目错了吧,A为行向量1行4列;B也为1行4列,XA=B则X为一个数值,设为x则由1*x=1,得x=1,带入其他的各个此等式不成立!应该A与B都是列向量吧!这样X为4×4的矩阵.此时X有16个未知数,
你这样的问题是不能直接回答的.你首先要讲清楚你想用初等变换做什么.如果是算矩阵的秩,那么可以随意使用行变换和列变换.如果是解线性方程组,也是可以随意使用,但是列变换需要保留记录,因为还需要解出未知向量