解线性方程组中有未知数的时候要化到什么程度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:52:38
解线性方程组中有未知数的时候要化到什么程度
当t为何值时,线性方程组有无穷多解,并求出此线性方程组的通解

写出增广矩阵为11t41-12-4-1t1t²第2行减去第1行,第3行加上第1行~11t40-22-t-80t+1t+1t²+4方程有无穷多解,那么系数行列式一定为0,所以(t+1

非齐次线性方程组有解的条件是

设Ax=b,A是m×n矩阵,Ax=b有解当且仅当秩(A)=秩(A,b)Ax=b有唯一解当且仅当秩(A)=秩(A,b)=n

方程个数小于未知数个数的线性方程组必有无穷多个解,是否成立,如何证明

不一定x+2y+z=1x+2y+z=23个未知数但显然两个不能同时成立所以无解

线性代数中,关于线性方程组解的问题

这个题你还是把有关的概念,结论都弄清楚后再来做.不然我写的过程你可能看不懂

从给出的线性方程组的增广矩阵 可以看出此方程组有几个方程,几个未知数?

如果是增广矩阵,则行数就是方程的个数,列数减1就是未知量的个数

如果线性方程组的系数行列式不等于零,则这个线性方程组一定有解,且解唯一.

如果一个线性方程组无解或者存在不唯一的解,则这个线性方程组的线性行列式等于零._____A∩B=A∪B既后一个的否命题原型.

线性代数中解线性方程组的时候取自由未知数有什么限制呢?为什么非零行的首个非零元不能取自由未知数呢?

自由未知数的含义是可以可以为任何数,对方程组都成立.而方程组的解向量的维数是未知数个数减去系数矩阵的秩.为了方便运算,把矩阵化成行最简且第一个非零上面都是0,至于不能取首个非零,是因为上面这些性质而得

在线性代数中,非齐次线性方程组有唯一解,无解,无穷解的条件分别是什么?

Ax=0无非零解时.则A为满秩矩阵.则Ax=b一定有解Ax=0有无穷多解时,则A一定不为满秩矩阵,Ax=b的解得情况有无解和无穷多解无R(A)≠R(A|b)无穷R(A)等于R(A|b).且不为满秩Ax

两边都有未知数的方程要怎样解?

X-1/25X=(X-15)+1/25X-5解:X-1/25X=X-15+1/25X-5-1/25X-1/25X=-15-52/25X=20X=250

线性方程组有解的充要条件 证明

设n元线性方程组系数矩阵为A,增广矩阵为B证明:①必要性:反证法:设r(A)<r(B),则B的行阶梯型矩阵中最后一个非零行对应矛盾方程0=1,这与方程组有解相矛盾,因此原假设不成立,即r(A)=r(B

线性方程组从给出的线性方程组的增广矩阵可以看出此方程组有几个方程,几个未知数? A、3个方程,3个未知数&nb

4个方程,4个未知数答案选B如果本题有什么不明白可以追问,另外发并点击我的头像向我求助,请谅解,

设线性方程组AX=B有3个不同的解,r1r2r3,且R(A)=n-2,n是未知数的个数,则() 选什么为什么

(A)不对.c1r1+c2r2+c3r3是AX=B的解c1+c2+c3=1(B)不一定(C)正确.A(2r1-3r2+r3)=2Ar1-3Ar2+Ar3=2B-3B+B=0.(D)不一定

若非齐次线性方程组中Ax=b中,方程的个数少于未知数的个数,则齐次方程组或非齐次方程组的解如何

在齐次方程组Ax=b中,若方程个数少于未知数的个数时,有非零解.在非齐次方程组中,不一定有解.当矩阵A的秩=增广矩阵(A,b)的秩的时候有解.

非齐次线性方程组有解的条件有几种

设AX=b是非齐次线性方程组则Ax=b有解的充分必要条件是r(A)=r(A,b),即系数矩阵的秩等于增广矩阵的秩.这等价与向量b可由A的列向量组线性表示(这是从向量的角度解释,很重要)

10.若齐次线性方程组系数矩阵的秩等于未知数个数,则改方程组( ) A、有唯一解 B、无解 C、有无穷多组解

A这时候正好有秩数那么多个有效方程,正好解出n个未,其实解就是零向量且是唯一的

fortran中有直接解线性方程组的内部函数吗?

语法中没有,自行编写,或寻求第三方函数库.

线性方程组AX=b有四个未知数,R(A)=3,且有解.如何判断AX=0的基础解系由一个非零向量构成.

AX=b的导出组AX=0的基础解系含n-r(A)=4-3=1个解向量所以AX=0的任一个非零解都构成它的基础解系.