计算I=∫∫√x² y²dxdy,D:x² y²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:06:00
计算I=∫∫√x² y²dxdy,D:x² y²
计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与

用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3

计算二重积分I=∫∫(1+X+2y)dxdy ,D={(x,y) | 0≤x≤2,-1≤y≤3}

原式=∫dy∫(1+x+2y)dx=4∫(1+y)dy=4×8=32.

计算二重积分:∫∫(a-√(x^2+y^2))dxdy,D的范围:x^2+y^20

用几何法,就是求半球的体积πA^2/2就可以了再问:关键就是不知道怎么求啦,嘿嘿,大大,过程也给我写下嘛您QQ多少,我想当面请教下咯再答:你看清楚这道题的几何意义就是求半径为a的上半球

∫∫(y/x)^2dxdy,D为曲线y=1/x,y=x,y=2所围成的区域计算二重积分

原式=∫dy∫(y/x)²dx=∫y²dy∫(1/x²)dx=∫y²(y-1/y)dy=∫(y³-y)dy=(y^4/4-y²/2)│=2^

计算曲面积分I=∫∫ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=R^2被x+z=

这个圆柱面在xoy上的投影为0所以dxdy=0写出圆柱面的参数方程x=Rcost,y=Rsint,0

计算二重积分I=∫∫ x/(x²+y²)dxdy,其中D为区域x²+y²≤1,x

原式=∫dθ∫[(rcosθ)/r²]rdr(极坐标代换)=∫cosθdθ∫dr=[sin(π/2)-sin0](1-0)=1.

计算二重积分 ∫∫cos(x+y)dxdy D={(x,y)|0

∫∫cos(x+y)dxdy∫dx∫cos(x+y)dy,x的上下限是π和0,y的上下限是π和0∫dx∫dsin(x+y)=∫[sin(π+x)-sinx]dx=∫-2sinxdx=2∫dcosx,x

计算∫∫D|cos(x+y)|dxdy,D:0

记O(0,0),A(π/2,0),B(π/2,π/2),C(0,π/2).则积分域D:为正方形OABC,连接AC,则在D1:△OAC内,x+y

计算I=∫∫(1-sin²(x+y))½dxdy,其中0≤x≤π/2 ,0≤y≤π/2

积分域用x+y=π/2划分如下,对于函数cos(x+y),区域1为正值,区域2为负值.∫∫√[1-sin²(x+y)]dxdy=∫∫√[cos²(x+y)]dxdy=∫∫|cos(

计算二重积分I= ∫∫根号下1-x^2-y^2 dxdy 其中D:x^2+y^2=0 y>=0 (∫∫符号下为D) 要详

这个用极坐标令x=pcosa,y=psinaa∈[0,π/2]p∈[0,1]代入得原积分=∫[0,π/2]∫[0,1]√(1-p^2)*pdpda=∫[0,π/2]da∫[0,1]√(1-p^2)*p

计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成

“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²

计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2

直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π

计算二重积分∫∫√(Y平方减去XY)dxdy,D是由Y=X Y=1 X=0围成的平面区域

∫∫√(y²-xy)dxdy=∫dy∫√(y²-xy)dx=∫dy∫√(y²-xy)(-1/y)d(y²-xy)=∫{(-1/y)(2/3)[(y²-

用极坐标计算二重积分∫∫[D]arctan(y/x)dxdy,其中=D:1

∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/