计算n阶行列式Dn=x 1,x,x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:43:04
计算n阶行列式Dn=x 1,x,x
计算n阶行列式,题有图

方法1归纳法按照第一列展开.得到递推关系式D=(α+β)Dn-1-αβDn-2(要求n≥3)假设α≠βD1=α+β=(α平方-β平方)/(α-β)D2=α平方+αβ+β平方=(α立方-β立方)/(α-

计算n阶行列式Dn计算n阶行列式

用性质化为上三角形.经济数学团队帮你解答.请及时评价.

计算n阶行列式, 

这写起来太麻烦了,三种抉择你挑一种吧:1)我简单说思路;2)你通过登录上我空间里交流;3)你多追问几遍.思路:1)提出各行各列的公因子,使成除主对角线外全1的行列式;公因子:(Πai)^2;2)各行减

刘老师好!n阶行列式的计算,

如图,有不清楚请追问.满意的话,请及时评价.谢谢!

线性代数计算n阶行列式

简单的方法可以用特征值把X写成a+x-a这样的话变成两个矩阵相加第一个全是a第二个是x-a倍的E第一个的特征值是na000.这样原始矩阵的特征值几尺na+x-a,x-a,x-a,.行列式就是(na+x

线性代数,计算n阶行列式Dn=[a a…a x][a a…xa]…[a x…a a][x a…a a]

将第2,3,.,n列均加到第1列,然后第1,2,.,n-1行均减去第n行,得D=(-1)^[n(n-1)/2][x+(n-1)a](x-a)^(n-1)再问:再答:

计算行列式Dn/x a ...a/ /a x ...a/ /........./ /a a ...x/

计算行列式Dnxa...aax...a......aa...x把第2,3,...,n列都加到第1列,提出公因子x+(n-1)a,得1a...a1x...a......1a...x第1行乘-1加到2,3

若n阶行列式Dn中每一行上的n个元素之和等于零,则Dn=

Dn=0,把每一列都加在其中一行,使这一行等于0,根据行列式的性质有一行(列)等于0,那么行列式也等于0

x1,x2,x3,是x^3+px+2=0的三个根,计算行列式 :|x1 x2 x3| |x2 x3 x1| |x3 x1

此题运用的是韦达定理的推广.在2次方程情形,韦达定理有一个结论是两根之和等于(-b/a),推广到3次方程有三根之和:x1+x2+x3=-b/a(其中a为最高次项系数,b为次高项系数,依此类推,初等代数

线性代数:计算行列式Dn=a 1 .1 a Dk列为k阶行列式

请问你学到展开定理了吗?只能用性质做?再问:学了,展开,余子式,性质都学了,那应该怎么做?再答:a0...010a...00.........00...a010...0a第1行减a倍的第n行,得00.

线性代数,计算n阶行列式

用性质化简如图,降阶计算较方便.经济数学团队帮你解答,请及时评价.

设n阶行列式Dn=|aij|,已知aij=-aji,i,j=1,2,Ln,n为奇数,求Dn的值

奇数阶反对称矩阵的行列式等于0.利用Dn=Dn^T=(-1)^nDn=-Dn可知Dn=0.

线性代数的问题计算行列式(Dk为k阶行列式)Dn=det(aij),其中aij=|i-j| 请写出具体步骤

所求行列式=012...n-1101...n-2210...n-3......n-1n-2...0依次作:ri-r(i+1),i=1,2,...,n-1-111...1-1-11...1-1-1-1.

n阶行列式 Dn=|x a ...a| |a x ...

所有列加到第1列所有行减第1行行列式化为上三角D=(x+(n-1)a)(x-a)^(n-1)再问:能详细点吗?最好发张图再答:所有列加到第1列x+(n-1)aa...ax+(n-1)ax...a...

线性代数 | x 1 … a 计算n阶行列式 D= a x ...a .........a a a ...x |

D=|xaa.aaxa.a.aaa.x|=(全部相加到第一列)|x+(n-1)aaa.ax+(n-1)axa.a.x+(n-1)aaa.x|=(每一行分别减去第一行)|x+(n-1)aaa.a0x-a

线性代数,证明行列式Dn=cosna.

看最后三行,按最后一行展开,ncosa对应的子式是D(n-1),但是最后1行倒数第二列对应的是D(n-2)所以递推式D(n)=ncosaD(n-1)-D(n-2)001(n-2)cosa100001(

计算行列式Dn=/x a v a/ /a x v a/ /v v/ /a a v x/的值

鸟棉b再问:这家是我看过信用最好的再答:请查看33088.info

计算n阶行列式Dn= (1 1 1 … 1 1 2 0 … 0 1 0 3 … …

这是爪形行列式,若学习过,可以直接按展开公式得结果.Dn=n!*(1-1/2-1/3-1/4-...-1/n)若没有学习过,也可以按r1-r2/2-...-ri/i-...-rn/n化为下三角(或c1