计算Z-1 z(z-1)dz的值,其中 是包含单位圆周在内的任何正向简单闭曲线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:23:18
f(z)=(3z+5)/(z^2+2z+4)是区域D={z/z的模小于等于1}上的解析函数,且D的边界C是光滑闭曲线.根据Cauchy积分定理,可知这个复积分为0.
其中第三个等号应用重要积分
设z=a+bi(a、b为实数,且b≠0)(1-z)/(1+z)=i1-z=(1+z)i1-a-bi=(1+a+bi)i整理,得(a-b-1)+(a+b+1)i=0a-b-1=0a+b+1=0解得a=0
柯西积分定理f=1/[4(z+2)]f'=-1/[4(z+2)^2]积分f/(z-1/2)^2dz=f'(1/2)=-1/[4(1/2+2)^2]=-1/25
虚数z满足|z|=1,z²+2z+1/z
dz=[sin(xy)+xycosxy]dx+(x^2cosxy)dydz|(1,1)=(sin1+cos1)dx+cos1dy再问:先求dx,dy,详细过程谢谢再答:=sin(xy)+xycosxy
这题也用不了柯西积分公式啊,用柯西积分公式需要能把被积函数化成一定的形式,本题用和柯西积分公式本质相同的留数定理计算.被积函数只要z=i/2和z=-1两个一级极点,并且它们都在积分圆周|z|=2内部,
答案见附图 说明:这是复变函数的环路积分,第一式子的积分是科希定理,可以查阅数学物理方法或复变函数的书籍.
z²+2z+4=0的根为:[-2±√(4-16)]/2=-1±i√3这两个点均不在单位圆内,因此被积函数在单位圆内解析,所以本题积分结果为0希望可以帮到你,如果解决了问题,请点下面的"选为满
妈啊,我怎么一个字都不认识啊.完了,真的是菜鸟了.
设F(x,y,z)=z^2-2xyz-1则Fx=-2yz,Fy=-2xz,Fz=2z-2xyαz/αx=-Fx/Fz=-(-2yz)/(2z-2xy)=yz/(z-xy)αz/αy=-Fy/Fz=xz
z=a+bi1/z=(a-bi)/(a+bi)(a-bi)=(a-bi)/(a²+b²)则a+a/(a²+b²)+[b-b/(a²+b²)]
柯西积分公式原式=2πie^z|z=0=2πi希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
因(z-1)/(z+1)为纯虚数故设(z-1)/(z+1)=ki(k∈R,k≠0)解之z=(1+ki)/(1-ki)故|Z|=|(1+ki)/(1-ki)|=|1+ki|/|1-ki|=1(1+ki与
是2πi.用柯西积分公式f(z0)=1/2πi∮f(z)/(z-z0)dz.可以令f(z)=z,则z0=1,所以此积分为2πi.
设Z=r(cosθ+isinθ),则1/Z=1/r*(cosθ-isinθ)所以Z+1/Z=(r+1/r)cosθ+(r-1/r)isinθ由于Z+1/Z是实数,所以r-1/r=0所以r=1从而|Z|
在C内(|z|=2),z=0是f(z)=[ln(1+z)]/z的孤立奇点,但z=-1不是f(z)的孤立奇点,ln(1+z)在z=-1以及小于-1的负实轴上不解析,所以f(z)在z=-1以及小于-1的负
令z=re^(iθ),则z共轭=re^(-iθ),dz=rie^(iθ)dθ,|z|=r,所以积分=∮rdθ,这里r=2,所以积分=2∮dθ(积分限0到2π)=4π