计算∮∑z²dxdy,其中∑是球面x² y² z²=R²的

来源:学生作业帮助网 编辑:作业帮 时间:2024/09/21 08:09:22
计算∮∑z²dxdy,其中∑是球面x² y² z²=R²的
计算∫∫(x+y+z)dxdy+(y-z)dydz,其中∑为三个坐标平面和平面x=1,y=1,z=1所围成的立方体表面外

P=y-zQ=0R=x+y+z∂P/∂x=0∂Q/∂y=0∂R/∂z=1∫∫(x+y+z)dxdy+(y-z)dydz=∫∫∫(

计算I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被平面x+z=2和z=0 所截部分的外

不对吧,怎么我算的是0?前面那个是dxdz还是dydz?再问:就是dxdz不是零,还有那个截面,我就是不会算截面的!再答:呵呵,本来看到外侧就用了散度公式--不过也算不到你那个答案。。。你再看看吧

利用高斯公式求曲面积分∮xy^2dydz+yz^2dzdx+zx^2dxdy,其中∑为球面x^2+y^2+z^2=R^2

原式=∫∫∫(αP/αx+αQ/αy+αR/αz)dxdydz=∫∫∫(x²+y²+z²)dxdydz=∫dθ∫sinφdφ∫r^4dr(你错在这儿,第二个积分限是)=(

利用高斯公式计算曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2

使用高斯公式后,化简后被积函数跟积分区域的圆柱体挺难构造关系,就按投影一步一步算吧.∑被积区域可以看成3个平面围成,S1:z=R,S2:z=-R,S3:x^2+y^2=R^2.可以看出S1,S2只在x

用高斯公式计算曲面积分∮xy^2dydz+yz^2dzdx+zx^2dxdy,其中∑为球面x^2+y^2+z^2=R^2

令P=xy²,Q=yz²,R=zx²∵αP/αx=y²,αQ/αy=z²,αR/αz=x²∴由高斯公式,得原式=∫∫∫(αP/αx+αQ/α

高斯公式两道题1.求取面积分I=∫∫x^2dydz+y^2dzdx+z^2dxdy,其中∑是立方体 0第一题0

1,表面外侧,符号为正,∫∫x^2dydz+y^2dzdx+z^2dxdy=∫∫∫(2x+2y+2z)dxdydz=2∫∫∫(x+y+z)dxdydz立方体0

封闭∫∫(xz+1)dxdy+(xy+1)dydz+(yz+1)dzdx其中∑是平面x=0 y=0 z=0 以及x+y+

第二题,因为整个球面是位于xOy平面上方的,角度φ由z正轴扫下来,到xOy平面就停止,扫描到的角度就是90°了答案在图片上,点击可放大./>再问:球面公式的球心和半径怎么看?==

计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2

补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-

∫∫xdydz+ydzdx+(z^2-2z)dxdy 其中∑为锥面 z=根号x^2+y^2 被平面z=0 和z=1所截得

Gauss公式.∂P/∂x+∂Q/∂y+∂R/∂z=1+1+2z-2=2z∫∫Σxdydz+ydzdx+(z²-2z)

计算曲面积分I=∫∫ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=R^2被x+z=

这个圆柱面在xoy上的投影为0所以dxdy=0写出圆柱面的参数方程x=Rcost,y=Rsint,0

计算二重积分(y-z)x^2dzdx+(x+y)dxdy其中是柱面x^2+y^2=1及平面z=0

=∫x(yzx^2-1/2(xz)^2)dx+∫y(1/2x^2+xy)dy=[1/3yzx^3-1/6z^2x^3+1/2x^2y+1/2xy^2]|z[0,2]、y[0,1]、x[0,1]=1

计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧

在半球面∑上添加圆面S:(x²+y²=1,z=0),使之构成封闭曲面V=∑+S.∵∫∫x³dydz+y³dzdx+z³dxdy=0(∵z=0,∴dz=

曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-

这题,昨天刚刚答了.这个不能用高斯定理,因为在这个比区域内,含有积分函数的奇点(0,0,0)所以分开来求即可.对于z=R和z=-R两个面∑1和∑2,因为dz=0而且两个面处,z=R处的投影,是朝上的圆

计算下列对坐标的曲面积分.∮Σ∮(x+2y+z) dxdy + yz dydz,其中Σ为平面x+2y+z=6与坐标面所围

令P=yz,Q=0,R=x+2y+z,则αP/αx=0,αQ/αy=0,αR/αz=1故由奥高公式得∫∫(x+2y+z)dxdy+yzdydz=∫∫yzdydz+0*dzdx+(x+2y+z)dxdy