计算不定积分∫arctan根号x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:11:57
计算不定积分∫arctan根号x
arctan根号下(y/x)=x/y,计算微分

设u=√(y/x)u'x=(-1/2)x^(-3/2)y^(1/2)u'y=(1/2)(xy)^(-1/2)那么原式变成了arctanu=(1/u^2)所以(u^2)arctanu=1两边取全微分得到

求arctan根号下x的不定积分,

∫arctan√xdx=xarctan√x-∫x*1/[1+(√x)^2]*1/2*1/√xdx=xarctan√x-1/2*∫√x/(1+x)*dx(令√x=t,则x=t^2,dx=2tdt)=xa

求 ∫[arctan√x/√(1+x)]dx 的不定积分.√表示根号,

t=arctan√x,sect=√(1+x),x=tan²t,dx=2tant*sec²tdt原式=∫2td(sect)=2t*sect-2∫sectdt=2t*sect-2ln|

求不定积分∫arctan xdx

∫arctanxdx=x*arctanx+∫x/(1+x²)dx=x*arctanx-1/2*ln(1+x²)+C

计算不定积分∫arctan√xdx

√x=tx=t²dx=2tdt∫arctan√xdx=∫2tarctantdt=∫arctantdt²=t²arctant-∫t²/(1+t²)dt=

计算不定积分∫arctanxx

∵∫arctanxx2(1+x2)dx=∫arctanx(1x2−11+x2)dx=∫arctanxx2dx−∫arctanx1+x2dx=−∫arctanxd(1x)−∫arctanxd(arcta

计算不定积分 积分号arctan (根号下x) dx

∫arctan(√x)dx分部积分=xarctan(√x)-∫x/(1+x)d(√x)=xarctan(√x)-∫(x+1-1)/(1+x)d(√x)=xarctan(√x)-∫1d(√x)+∫1/(

计算不定积分∫xsinxdx.

∫xsinxdx=-xcosx+sinx+C

不定积分问题:1)∫arctan1/xdx 2)∫arctan√xdx (dx前为根号X)

用分步积分法就可以做出来了∫arctan1/xdx=xarctan(1/x)-∫xdarctan1/x=xarctan(1/x)-∫x/[1+(1/x)^2]*(-1/x^2)dx=xarctan(1

arctan根号2是什么,

就是tan值为根号二的角是多少度的意思

1/(1+sinx)的不定积分怎么求?arctan根号下(根号x-1)的不定积分怎么求?

我来帮你!楼主1.三角换元+万能公式令tan(x/2)=t,则sinx=2t/(1+t^2),dx=2dt/(1+t^2),带入整理,∫1/(1+sinx)dx=∫2dt/(1+2t+t^2)=2∫d

∫arctan√(x^2-1)dx求不定积分

设x=sect原式=∫tdsect=tsect-∫sectdt=tsect-ln|sect+tant|+C=xarccos(1/x)-ln|x+√(x^2-1)|+C

求不定积分arctan根号(x)dx/根号(1-x)dx

原式=(-2)∫arctan根号(x)d根号(1-x)=(-2)根号(1-x)arctan根号(x)+2∫根号(1-x)darctan根号(x)2∫根号(1-x)darctan根号(x)中设x=(si

用分部积分法来算∫arctan(x+1)dx的不定积分

∫arctan(x+1)dx=xarctan(x+1)-∫xdarctan(x+1)=xarctan(x+1)-∫x*1/[1+(x+1)^2]dx=xarctan(x+1)-∫x/(x^2+2x+2

计算不定积分根号e^x_1dx

∫√e^xdx,令t=e^x,则∫√e^xdx=∫√tdlnt=∫1/√tdt=2√t带回t=e^x,则∫√e^xdx=2√e^x==如果你要求的是∫1/√e^xdx,同上述方法:∫1/√e^xdx=

求不定积分 ∫ x arctan xdx

∫xarctanxdx=∫arctanxd(x^2/2)=x^2/2*arctanx+(1/2)∫x^2/(1+x^2)*dx=(1/2)(x^2arctanx+x-arctanx)+C

不定积分arctan根号x dx

分步积分法原式=xarctan√x-∫xdarctan√x=xarctan√x-∫x/(1+x)dx=xarctan√x-∫(x+1-1)/(1+x)dx=xarctan√x-∫[1-1/(1+x)]

不定积分∫arctan根号x/根号x*1/(1+x)dx

∫(arctan√x)/[√x(1+x)]dx=∫(arctan√x)/(1+x)d(2√x)=2∫(arctan√x)/[1+(√x)²]d(√x)=2∫arctan√xd(arctan√