计算二重积分E^根号下X^2 y^2 其中D=1小于等于X^2 y^2小于等于4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:51:27
计算二重积分E^根号下X^2 y^2 其中D=1小于等于X^2 y^2小于等于4
计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy

原式=∫dy∫e^(-y²/2)dx(作积分顺序变换)=∫(1-y²)e^(-y²/2)dy=∫e^(-y²/2)dy-∫y²e^(-y²/

计算二重积分:∫∫D ln(x^2+y^2)dxdy,其中D为e^2≤x^2+y^2≤e^4

{x=rcosθ、y=rsinθe²≤x²+y²≤e⁴→e²≤r²≤e⁴→e≤r≤e²∫∫_[D]ln(x²

计算 二重积分 (被积函数为(根号下X方加Y方/根号下4a方-X方-Y方) D:Y=-a+根号下a方-X方 和直线Y=-

用极坐标试试看,大概看了下,应该可以的,区域D是上半圆右上角被割了一块,区域D=区域D1-区域D2区域D1就是上半圆,区域D2就是被割的那一块区域D1就是整圆的一半(利用了对称性),通过求整圆可以求得

计算:(2/3x根号下9x+6x根号下y/x)+(y根号下x/y-x的平方根号下1/x)=

[(2/3)x√(9x)+6x√(y/x)]+[y√(x/y)-x²√(1/x)]化简:原式=[(2/3)*3*x√x+6√(xy)]+[√(xy)-x√x]=2x√x+6√(xy)+√(x

计算二重积分 ∫dy∫e^(-x^2)dx

∫dy∫e^(-x^2)dx=-∫dy∫e^(-x^2)dx=-∫dx∫e^(-x^2)dy=-∫e^(-x^2)dx∫dy=-∫xe^(-x^2)dx=1/2e^(-x^2)=1/2(e^(-1)-

计算二重积分∫[1,3]dx∫[x-1,2]e^( y^2) dy

∫(x=1→3)dx∫(y=x-1→2)e^(y²)dy交换积分次序:dydx→dxdyx=1到x=3,y=x-1到y=2y=0到y=2,x=1到x=y+1=∫(y=0→2)e^(y

二重积分问题 (1)计算∫∫根号下(y^2-xy) dxdy,区域D={y=x,x=0,y=1} (2)区域D={(X,

∫∫根号下(y^2-xy)dxdy=∫(0,1)[∫(0,y)根号下(y^2-xy)dx]dy=∫(0,1)[∫(0,y)(-y)*y根号下(1-x/y)d(1-x/y]dy=∫(0,1)[∫(0,y

计算二重积分∫(上R下-R)dy∫(上0下√(r^2-y^2))e^(x^2+y^2)dx 有点麻烦哈,不过很急~~~

积分区域是上半圆,然后用极坐标做,原积分变为:-∫(0~π)dθ∫(0~r)e^(r*r)rdr分部积分很容易的

12.计算二重积分∫∫ 1/根号下 1+x^2+y^2 其中积分区域为{(x,y)|x^2+y^2小于等于3}

 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

计算二重积分∫∫ 1/根号下 1+x^2+y^2 其中积分区域为{(x,y)|x^2+y^2小于等于3}

用极坐标:∫∫1/√(1+x^2+y^2)dxdy=∫(0,2π)dθ∫(0,√3)r/1/√(1+r^2)dr=2π[√(1+r^2)]|(0,√3)=2π(2-1)=2π

二重积分问题,计算二重积分(根号下(x^2+y^2)+y)dxdy,其中D使由x^2+y^2=4和(x+1)^2+y^2

对着电脑边录边做题,不能保证结果完全正确,只是给你提示方法,请自己认真验算一下.

计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2

补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-

计算二重积分I= ∫∫根号下1-x^2-y^2 dxdy 其中D:x^2+y^2=0 y>=0 (∫∫符号下为D) 要详

这个用极坐标令x=pcosa,y=psinaa∈[0,π/2]p∈[0,1]代入得原积分=∫[0,π/2]∫[0,1]√(1-p^2)*pdpda=∫[0,π/2]da∫[0,1]√(1-p^2)*p

计算二重积分 y *根号(x^2+y^2) dxdy,其中D:x^2+y^2=0

用极坐标算x=ρcosαy=ρsinα积分区域D是上半圆,ρ∈[0,1],α∈[0,π]∫∫√(x^2+y^2)dxdy=∫dα∫ρ^2dρ(dα前的上限是π,下限是0;dρ的上限是1,下限是0)=∫

计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成

“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²

计算二重积分:∫∫x(根号下y)dσ,其中D是由两条抛物线y=根号下x及y=x2所围成的闭区域!求过程!

{y=√x{y=x²==>交点为(0,0),(1,1)∫∫_Dx√ydσ=∫(0→1)x∫(x²→√x)√ydy=∫(0→1)x·(2/3)y^(3/2):(x²→√x)

计算二重积分D∫∫e^(-x^2-y^2)dδ d:x^2+y^2

换成极坐标x=pcosty=psintp∈[0,a]t∈[0,2π]∫∫e^(-x^2-y^2)dδ=∫[0,2π]dt∫[0,a]e^(-p^2)pdp=t[0,2π]*[-1/2e^(-p^2)]

计算二重积分∫∫e^y^2dσ,其中D:y=x及y=2x,y=1所围成的闭区域

y=x及y=2x,y=1交点(1/2,1),(1,1)则∫∫e^y^2dσ=∫[0,1]∫[y/2,y]e^y^2dxdy=∫[0,1]e^y^2∫[y/2,y]dxdy=∫[0,1]e^y^2*y/