计算二重积分sin(x^3) 2y 1dxdy其中几分区域为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:19:22
对此二重积分改变积分次序,则原式=∫(0到1)sin(y^3)dy∫(0到√y)x^3dx=1/4∫(0到1)sin(y^3)*y^2dy=1/12*(1-cos1).
先发一半.剩下的我慢慢算.因为确实不好积再问:嗯再答:我这有个思路。你也试试,当然我最后肯定给你做出答案,就是觉得这个题出的不好。简直是考察不定积分能力再问:极坐标做的。。再问:我应该直接表上去。这是
用极坐标被积函数(3-r(sint+cost))rt从0到2pi;r从0都1结果3pi
用分步积分法∫rsinrdr=-∫rdcosr=-rcosr+∫cosrdr=(-rcosr+sinr)会了吧
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
∫dy∫e^(-x^2)dx=-∫dy∫e^(-x^2)dx=-∫dx∫e^(-x^2)dy=-∫e^(-x^2)dx∫dy=-∫xe^(-x^2)dx=1/2e^(-x^2)=1/2(e^(-1)-
∫(x=1→3)dx∫(y=x-1→2)e^(y²)dy交换积分次序:dydx→dxdyx=1到x=3,y=x-1到y=2y=0到y=2,x=1到x=y+1=∫(y=0→2)e^(y
这一类积分题目,最好的方法肯定是积分变换了.从积分范围出发有令u=x-1/2,v=2y-1/4于是积分范围变成了u^2+v^2≤5/16∫∫(x+y)dxdy=∫∫2(u+1/2+v/2+1/8)du
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
用极坐标:∫∫1/√(1+x^2+y^2)dxdy=∫(0,2π)dθ∫(0,√3)r/1/√(1+r^2)dr=2π[√(1+r^2)]|(0,√3)=2π(2-1)=2π
先画出积分区间,显然y=1/x和y=x的交点是(1,1)那么x的积分区间是(1,2)于是原积分=∫(1到2)3xdx*∫(1/x到x)1/y²dy=∫(1到2)3xdx*(-1/y)代入y的
用直线x+y=π和x+y=2π将积分区间分成三部分则∫∫|sin(x+y)|δ=∫(0到π)dx∫(0到π-x)sin(x+y)dy-∫(0到π)dx∫(π-x到2π-x)sin(x+y)dy+∫(0
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
积分区域是图中橙色部分与蓝色部分合起来,现作辅助线y=-x³,将区域分为橙色与蓝色两部分∫∫x(1+yf(x²+y²))dxdy=∫∫xdxdy+∫∫xyf(x²
我不能传图片--||用换元法:x=r*cos(a);y=r*sin(a)∫∫sin(x^2+y^2)dxdy=∫∫r*sin(r^2)drda;其中r的积分限为:[0,2],a的积分限为:[0,2pa
是滴,这是极坐标系与直角坐标系互相转换的方法
原式=∫∫sin^2xsin^2ydxdy=1/4∫∫(1-cos2x)(1-cos2y)dxdy=1/4(x-1/2*sin2x)(y-1/2*sin2y)[0≤X≤π,0≤Y≤π.]=1/4*π^
是不是等于4π?