计算二重积分xy²dx 其中d是由圆用x²+y²=4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:46:16
计算二重积分xy²dx 其中d是由圆用x²+y²=4
计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

计算二重积分∫∫(X/1+XY)dxdy,D=[0,1]*[0,1]

【数学之美】团队为你解答,如果解决问题请采纳.

计算二重积分∫∫D(x-y)dx D是y=2-x²和y=2x-1围成的区域

y=2-x²和y=2x-1的交点为:(1,1),(-3,-7)∫∫D(x-y)dxdy先积y=∫[-3→1]dx∫[2x-1→2-x²](x-y)dy=∫[-3→1](xy-(1/

计算二重积分∫∫(D)3xy^2dxdy,其中D由直线y=x,x=1及x轴所围成区域

积分区域:0≤x≤1,0≤y≤x∫∫3xy^2dxdy=3∫xdx∫y^2dy=3∫x[y^3/3]dx=3∫x*x^3/3dx=∫x^4dx=x^5/5=1/5

计算二重积分∫∫D dxdy/根号4-x²-y² 其中D是由圆周x²+y²=4围

原式=∫dθ∫rdr/√(4-r^2)(作极坐标变换)=2π∫rdr/√(4-r^2)=2π[√(4-0^2)-√(4-2^2)]=4π.

计算二重积分xy^2dxdy,其中D是由圆周x^2+y^2=4及y轴所围成的右半闭区间.

∫∫xy²dxdy=∫dθ∫(rcosθ)*(rsinθ)²*rdr(应用极坐标变换)=∫(cosθsin²θ)dθ∫r^4dr=∫sin²θd(sinθ)∫r

二重积分的记法二重积分可以这样写∫∫f(x,y))dσ=∫dx∫f(x,y)dy,其中∫dx与∫f(x,y)dy是用乘号

这是常识,具体积分时就是按照先积一个变量,再积另一个变量的方式计算,这种写法无需证明,常识而已.∫∫f(x,y))dσ当然也可以写作∫dy∫f(x,y)dx

计算二重积分、∫∫[D](x/y^2)dxdy,其中D是曲线y=x,xy=1及x=2围成

原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³

计算二重积分∫∫√(Y平方减去XY)dxdy,D是由Y=X Y=1 X=0围成的平面区域

∫∫√(y²-xy)dxdy=∫dy∫√(y²-xy)dx=∫dy∫√(y²-xy)(-1/y)d(y²-xy)=∫{(-1/y)(2/3)[(y²-

计算曲线积分∮(x^3+xy)dx+(x^2+y^2)dy其中L是区域0

原积分=∫(0到1)(1+y^2)dy+∫(1到0)(x^3+x)dx+∫(1到0)y^2dy+∫(0到1)x^3dx=4/3-3/4-1/3+1/4=1/2.

计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D

X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x

∫∫(x^2+y)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域, 计算二重积分.

∫∫(D)(x²+y)dxdy=∫(1→2)dx∫(1/x→x)(x²+y)dy=∫(1→2)[x²y+y²/2]|(1/x→x)dx=∫(1→2)[x

用极坐标计算二重积分∫∫[D]arctan(y/x)dxdy,其中=D:1

∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/

计算二重积分∫∫D(sinx/x)dxdy,其中D是由0≤x≤1,0≤y≤x所围成的闭区域

∫(从0到1)dx∫(从0到x)sinx/xdy=∫(从0到1)(sinx/x)*xdx=∫(从0到1)sinxdx=-cosx(0到1)=cos1-1再问:啊我知道了..谢谢啦~