计算半径为R电量为q的均匀带电球体内,外任一点的电势
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:48:26
如果就做这道题来说的话,图中的解法应该是做等效处理了,由于圆环的对称性,在电势上相当于带Q的点电荷在距离为R上的电势,图中的解法应该是解等效后的这样一个简单模型,楼主说的电势叠加是可以的.
当没有挖去小块的面积S时,球心处的电场强度为0(这一点可以用微元法证明),现挖去小块的面积S(可视为点电荷),挖去的电荷量为QS/(4πR²),在球心处产生的电场强度为kQS/(4πR^4)
半径为R的均匀带电球壳,电量为Q,球面内电场强度大小为0,球心处电势为kQ/R
设个角度用积分就能算
高斯定理知道吧,你在那两个带电球面之间任意取一个同心高斯球面,它包围的电荷只有q,这样由高斯定理即可知,那两个带电球面之间的电场只由q决定,而与Q无关,所以,两球面的电势差与Q无关.也可由积分运算证明
从理论计算上来看,结合高斯定理,推导出的计算公式是:如图.(E.为真空电容率)(q其实就是Q)推导过程需要用到定积分理论.如果楼主还有问题的话,随时欢迎.希望对楼主有用~~~~~再问:可以写的在详细点
在半圆上取线元,dl=rdθ其线元带点量为dq=λdl=q/(πr)*rdθ所以dE=dq/4πε0r^2因为各个电荷元在0点产生的dE方向不同,所以把dE分解其中dEy=0,dEx=dEsinθ所以
外面是均匀球壳便可以无视,所以内部就无视外侧的球壳,将内侧的球视为在圆心的点.在球外视为球心的点即可
当n相当大时,每一小段都可以看作一个点电荷,其所带电荷量为q=Q/n,由点电荷场强公式可求得每一点电荷在P出的场强为E=k*Q/(nr1^2)=kQ/[n(R^2+r^2)],各小段带电环在P处的场强
整个球面以及内部空间是等势体,电势与一带电量为q的点电荷在距离为r的点产生的电势相等.U=q/(4πεr)具体来说,用积分做,电场强度E=q/(4πεr^2),球表面的电势为E从r到无穷远点对r的积分
用高斯定理做就可以球面的话r小于等于R时场为零,因为球面内部没有电荷分布,而球体的话如果是均匀带电球体内部是有场分布的再问:能告诉下具体怎么求吗?再答:
e=Qr/4π爱普戏弄零(R的三次方)(rR)v=3Q/8π爱普戏弄零R-Q(r的平方)/8π爱普戏弄零(R的三次方)(rR)
kQqh/[(h^2+R^2)*(h^2+R^2)^-0.5]用到了力的合成和相似三角形.
同样根据对称性原理,楼主你可以看到,球面上与被挖掉的孔对应的位置上,是一块没有被挖掉的,而且带电的圆形壳,其他的位置我们直接忽略他们,因为他们都是两两对应的,这个概念很难说明白,两两对应的意思就是,有
这个题很简单啊,课本上应有推理过程.运用高斯定理,求解电场强度,然后再用积分求电势即可
ρ只和r有关,电荷分布是球对称的,所发出的电场线也是球对称分布的射线.做一与带电球同心,半径为r(r>R)的高斯球面,设球面上各点场强大小为E,根据高斯定理:E*4πr²=Q/ε解出球外的场
采用补偿法. 把圆心处的电场看作两部分电场的叠加,一个是没有缺口的均匀带电圆环产生的电场,这部分的电场强度为零.另一个是与缺口相对应,带等量异种电荷的带电体在圆心处产生的电场. 带电量为q'=[d
根据高斯定理,可得出电场分布E=q/4πεr²(rR)U=∫(q/4πεr²)dr+∫[﹙q+Q)/4πεr²]dr(两个积分区间分别为r—R和R—∞)最后即可求出U=1
在没有放入点电荷时,球壳内的电场强度处处为0,因为这时候的球壳本身具有屏蔽作用.所以,作用力为0
2(1):球壳内场强为零.球壳外场强E=/4πεR^2.(2)球壳内电势为零.球壳外电势E=/4πεR.3(1):B=((2I/0.5d)-(I/0.5d))μ/2π=μI/πd.(2):x=2d/3