计算广义积分∫(0~2)dx (1-x)²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:58:40
原式=(1/π)*(arctgx)|正无穷大,负无穷大=(1/π)[π/2-(-π/2)]=1
就是令x=10tana那么1/(x2+100)=100(seca)方dx=10(seca)方da那么不是越掉了吗?等于1/10另外a的范围就是0到π/2(tanπ/2)等于正无穷所以最后答案就是1/1
令x=sect原式=∫(0,π/3)dt=π/3
先分部积分∫a^xx^2dx=(1/lna)∫x^2da^x=a^xx^2/lna-(1/lna)∫a^x2xdx=a^xx^2/lna-(1/lna)^2∫2xda^x=a^xx^2/lna-(1/
F(x)=Se^(-2x)dx=-1/2*Se^(-2x)d(-2x)=-1/2*e^(-2x)原积分=lim(x--->+∞)F(x)-F(0)=lim(x--->+∞)(-1/2*e^(-2x)+
(+∞,0)?假设是(0,+∞)∫1/(x+1)^2*dx=∫1/(x+1)^2*d(x+1)=-1/(x+1)因为lim(x→+∞)[-(1/x+1)]=0所以原式=0-[-1/(0+1)]=1
∫ln(1-x^2)dx=xln(1-x^2)-∫xdln(1-x^2)=xln(1-x^2)-∫x/(1-x^2)*(-2x)dx=xln(1-x^2)-2∫(-x^2)/(1-x^2)dx=xln
∫(-∞—0)2x/(x^2+1)dx=∫(-∞—0)1/(x^2+1)dx^2==∫(-∞—0)1/(x^2+1)d(x^2+1)=ln(x^2+1)|(-∞—0)=-∞求高手指点对否
先求不定积分∫ln(1/(1-x²))dx=-∫ln(1-x²)dx=-xln(1-x²)-2∫x²/(1-x²)dx=-xln(1-x²)
令x^2=t,将dx变换到dt,再用伽马函数就行了再问:原来是伽马函数!!谢谢了!!
∫(0-->+∞)1/(x²+2x+3)dx=∫(0-->+∞)1/(x²+2x+1+2)dx=∫(0-->+∞)1/((x+1)²+2)dx=(1/√2)*arctan
∫[0,1]x/根号(1-x^2)dx=∫[0,1]1/(2根号(1-x^2))dx²=∫[0,1]-d(根号(1-x^2))=-根号(1-x^2))[0,1]=0-(-1)=1
这要分3种情况解答1.当r=0时原式=0;2.当r>0时原式=-∫(0,+∞)e^(-rx)d(-rx)=[-e^(-rx)]│(0,+∞)=-0+1=1;3.当r<0时原式=-∫(0,+∞)e^(-
凑微+分部积分+变量替换记I=∫(1~+∞)arctanx/(x^2)dx=-∫(1~+∞)arctanxd(1/x)=-(1/x)arctanx|(1,+∞)+∫(1~+∞)1/[x(1+x^2)]
直接算.=1/2∫(0,+∞)x^2e^(-x^2)dx^2=1/2∫(0,+∞)te^(-t)dt=1/2∫(0,+∞)e^(-t)dt=1/2
那个原函数可以求出来啊,是ln(lnx)+C由此可知此积分发散再问:求原函数的过程可以写出来吗?再答:∫dx/(xlnx)=∫d(lnx)/lnx=ln(lnx)+C再问:请问∫dx/(xlnx)=∫
∫(0~+∞)1/(1+x^2)dx=arctanx[0-->+∞]=π/2
点击放大,如果不清楚,可以放大荧屏:
这个题我以前做过,请参见ln(1-x²)=-ln(1/(1-x²)),与你的题只差一个负号,所以你这题结果是:2ln2-2