计算广义积分∫(0~2)dx (1-x)²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:58:40
计算广义积分∫(0~2)dx (1-x)²
计算广义积分∫(正无穷 负无穷)dx/(π(1+x^2))

原式=(1/π)*(arctgx)|正无穷大,负无穷大=(1/π)[π/2-(-π/2)]=1

请问1.计算广义积分∫[0,+∞] dx/(100+x^2).

就是令x=10tana那么1/(x2+100)=100(seca)方dx=10(seca)方da那么不是越掉了吗?等于1/10另外a的范围就是0到π/2(tanπ/2)等于正无穷所以最后答案就是1/1

计算广义积分∫(1,2)dx/[x(x^2-1)^(1/2)]

令x=sect原式=∫(0,π/3)dt=π/3

请计算广义积分:∫a^x x^2 dx

先分部积分∫a^xx^2dx=(1/lna)∫x^2da^x=a^xx^2/lna-(1/lna)∫a^x2xdx=a^xx^2/lna-(1/lna)^2∫2xda^x=a^xx^2/lna-(1/

广义积分∫[0,+∞]e^(-2x)dx解题过程

F(x)=Se^(-2x)dx=-1/2*Se^(-2x)d(-2x)=-1/2*e^(-2x)原积分=lim(x--->+∞)F(x)-F(0)=lim(x--->+∞)(-1/2*e^(-2x)+

求广义积分∫1/(x+1)^2*dx,(+∞,0)

(+∞,0)?假设是(0,+∞)∫1/(x+1)^2*dx=∫1/(x+1)^2*d(x+1)=-1/(x+1)因为lim(x→+∞)[-(1/x+1)]=0所以原式=0-[-1/(0+1)]=1

广义积分∫ln(1-x^2)dx(0到1)

∫ln(1-x^2)dx=xln(1-x^2)-∫xdln(1-x^2)=xln(1-x^2)-∫x/(1-x^2)*(-2x)dx=xln(1-x^2)-2∫(-x^2)/(1-x^2)dx=xln

求广义积分 ∫(-∞—0) 2x/(x^2+1)dx,

∫(-∞—0)2x/(x^2+1)dx=∫(-∞—0)1/(x^2+1)dx^2==∫(-∞—0)1/(x^2+1)d(x^2+1)=ln(x^2+1)|(-∞—0)=-∞求高手指点对否

计算广义积分∫[0,1]ln[1/(1-x²)]dx

先求不定积分∫ln(1/(1-x²))dx=-∫ln(1-x²)dx=-xln(1-x²)-2∫x²/(1-x²)dx=-xln(1-x²)

计算广义积分∫0到+∞ e^(-x^2)dx 答案是(√π)/2怎么算的?

令x^2=t,将dx变换到dt,再用伽马函数就行了再问:原来是伽马函数!!谢谢了!!

广义积分∫(0,+∞) 1/(x^2+2X+3)dx为

∫(0-->+∞)1/(x²+2x+3)dx=∫(0-->+∞)1/(x²+2x+1+2)dx=∫(0-->+∞)1/((x+1)²+2)dx=(1/√2)*arctan

广义积分∫[0,1]x/根号(1-x^2)dx

∫[0,1]x/根号(1-x^2)dx=∫[0,1]1/(2根号(1-x^2))dx²=∫[0,1]-d(根号(1-x^2))=-根号(1-x^2))[0,1]=0-(-1)=1

计算广义积分∫r e^-rx dx(0,+∞)

这要分3种情况解答1.当r=0时原式=0;2.当r>0时原式=-∫(0,+∞)e^(-rx)d(-rx)=[-e^(-rx)]│(0,+∞)=-0+1=1;3.当r<0时原式=-∫(0,+∞)e^(-

计算广义定积分 ∫ (+无穷,1)arctanx/(x^2) dx

凑微+分部积分+变量替换记I=∫(1~+∞)arctanx/(x^2)dx=-∫(1~+∞)arctanxd(1/x)=-(1/x)arctanx|(1,+∞)+∫(1~+∞)1/[x(1+x^2)]

判断下列广义积分的敛散性∫x^3e^(-x^2)dx,[0,∞]

直接算.=1/2∫(0,+∞)x^2e^(-x^2)dx^2=1/2∫(0,+∞)te^(-t)dt=1/2∫(0,+∞)e^(-t)dt=1/2

讨论广义积分∫(1,2) dx/(xlnx)的敛散性

那个原函数可以求出来啊,是ln(lnx)+C由此可知此积分发散再问:求原函数的过程可以写出来吗?再答:∫dx/(xlnx)=∫d(lnx)/lnx=ln(lnx)+C再问:请问∫dx/(xlnx)=∫

广义积分∫(0~+∞)dx/1+x^2 dx 怎么求?

∫(0~+∞)1/(1+x^2)dx=arctanx[0-->+∞]=π/2

计算1/(x^2+4)dx区间(0,正无穷)的广义积分

点击放大,如果不清楚,可以放大荧屏:

广义积分 ∫ln(1-x^2)dx收敛于________(积分区域为0-1)

这个题我以前做过,请参见ln(1-x²)=-ln(1/(1-x²)),与你的题只差一个负号,所以你这题结果是:2ln2-2