计算抛物线(x^2 y^2)=ax

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:58:19
计算抛物线(x^2 y^2)=ax
如图,抛物线y=x平方-2x-3,抛物线与x轴交予A,B两点A在左

y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P

计算抛物线y=x^2 -3x+2上任一点P(u,v)处的切线的斜率,并求出抛物线顶点处切线的方程

y'=2x-3点P(u,v)处的切线的斜率k=2u-3抛物线顶点处切线的方程y=9/4-9/2+2=-1/4抛物线顶点处k=0!y'=2x-3=0,x=3/2(切线与X轴平行)

设F为抛物线y^2=4x的焦点,A、B、C为该抛物线上三点

解抛物线y^2=4x的准线是x=-1焦点是(1,0)抛物线上一点到焦点的距离:x-(-1)=x+1FA+FB+FC=0{向量},∴xA-1+xB-1+xC-1=0∴xA+1+xB+1+xC+1=6FA

抛物线y=2x^2上一点A(1,2),求抛物线的焦点坐标,准线方程,抛物线在A处的切线方程

抛物线y=2x^2即x^2=1/2x2p=1/2p=1/4焦点坐标(1/8,0)准线方程x=-1/8y'=4x抛物线在A处的切线的斜率=4抛物线在A处的切线方程是y-2=4(x-1)即4x-y-2=0

抛物线y=2x

∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.

一 抛物线y=-a^2x^2-x-4与坐标轴有几个交点、

y=a2x2-x-2因为题目说是抛物线,所以a≠0,则a2>0,抛物线开口向上.当x=0时,y=-2.所以抛物线与y轴的一个交点为(0,-2)Δ=b2--4ac=1+8a2>0,所以抛物线与x轴没有交

如图,抛物线y=x2-2x-3与x轴交A、B两点

容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=

1已知抛物线y=x^2+ax+a+2

第一个是与什么有交点?要是与X轴,就x^2+ax+a+2=0,求出x的2个值.两点距离最短,就只有1个交点,根据b^2-4ac=0,得出a^2-4(a+2)=0,得出a.2,根据y=x^2-(k+1)

利用定积分定义计算抛物线Y=X^2+1,两直线X=A,X=B及横轴所围成的图形面积

S=∫(A→B)(x^2+1)dx=(1/3x^3+x)(A→B)=(1/3B^3+B)-(1/3A^3+A)

计算抛物线y方=2x与直线y=x-4所围成的图形的面积

直线y=x-4和x轴的交点为A(4,0)直线y=x-4和y²=2x的交点为B(2,-2),C(8,4)用y作自变量更容易做.直线x=y+4,抛物线,x=y²/2画个草图可知,S=∫

计算由抛物线y=x^2与直线y= x,y=2x所围图形的面积

先计算y=x²与y=2x所围成的面积计算y=x²与y=2x的交点,即y=2x=x²,解方程得两交点为(0,0)和(2,4)∴S1=∫(0,2)(2x-x²)dx

抛物线y=2x平方的图像按a平移,得到抛物线 y=2x平方-12x+22的图像,则a=

∵y=2x²-12x+22=2(x²-6x+9)+4=2(x-3)²+4∴将y=2x²向右平移3个单位,在向上平移4个单位,即可得到y=2(x-3)²

计算抛物线y^2=2x与直线y=x-4所围城图形的面积

利用积分求解连立两个方程2x=x^2-8x+16得到交点是x=2和x=8对应y是-2和4因为曲线可表示成x=y^2/2与x=y+4积分∫y+4-y^2/2dy积分区间[-2,4]=y^2/2+4y-y

计算抛物线y平方=2x与直线y=x-4所围成的图形面积

∫-2,4[(y+4)-1/2y²]dy=(1/2y²+4y-1/6y³)|-2,4=(8+16-32/3)-(2-8-4/3)=40/3-(-22/3)=62/3再问:

已知抛物线y=x^2-4x+h的顶点A在直线y=-4x-1上,求抛物线的表达式

由y=x^2-4x+h得y=(x-2)^2+h-4所以A(2,h-4)将A代入得h-4=-8-1h=-9+4h=-5所以:y=x^2-4x-5(望采纳)

已知抛物线y=x^2-4x+h的顶点A在直线y=2x-1,求抛物线的顶点坐标.

抛物线的顶点坐标A(X,Y)X=-b/2a=-(-4)/2=2A在y=2x-1上,y=2*2-1=3∴顶点坐标A(2,3)

若抛物线y = ax^2与曲线y = In x相切,则a= ( )

假设切点是A(m,n)则他在两个函数上n=am²n=lnm所以am²=lnm且此处两个切线是同一条,所以斜率相等即导数相等y=ax²,y'=2axy=lnx,y&

已知抛物线Y=aX^2(a

y=ax^2,x^2=2*(1/2a)*y,即p=1/2a所以F(0,p/2)即F(0,1/4a),准线l:y=-p/2即y=-1/4a(1)直线L斜率不存在.易得只有一交点,不合题意(2)设直线L:

如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a

解题思路:利用二次函数的性质求解。解题过程:过程请见附件。最终答案:略