计算由y=x^2,x=y^2所围成的图形绕y轴旋转一周后得到的图形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:44:41
计算由y=x^2,x=y^2所围成的图形绕y轴旋转一周后得到的图形
计算由曲面y^2=x及y=x^2和平面z=0,x+y+z=2所围成立体的体积

所围成立体的体积=∫dx∫(2-x-y)dy=∫(2√x-x/2-x^(3/2)-2x²+x³+x^4/2)dx=4/3-1/4-2/5-2/3+1/4+1/10=11/30

计算由直线y=x-4,曲线y=根号下2x以及x轴所围图形的面积

联立两个方程求出交点(8,4)原图形面积可以由曲线与x轴和直线x=8围成的面积减去直线y=x-4,直线x=8,x轴围成的三角形面积三角形面积可以简单求出前面的曲线与x轴,x=8的面积可以看做y=根号下

1.计算由y=x²,y=2x所围成的平面图形的面积

画了个图,比较难画, 比较粗糙啊.有点不清楚,另存到电脑就可以看清楚了

计算由下列各曲线所围成图形的面积:y=1/2x^2,x^2+y^2=8(两部分都要计算)

公式就是这个,自己算下吧再问:答案里有pai是怎么出来的再答:应该是做了个换元积分,x=根号下(8(cosx)^2)y=根号下(8(sinx)^2)这个是从圆的公式得来的,因为在一个坐标系中,另一个式

y=f(x)由x^2+3y^4+x+2y=1所确定,求dy/dx

x^2+3y^4+x+2y=1两边同时对x求导,得到:2x+3*4*y^3*dy/dx+1+2*dy/dx=0(12y^3+2)dy/dx=-1-2xdy/dx=-(1+2x)/(2+12y^3)

计算由曲线y=x^2与x+y+2所围成的平面区域的面积急

由曲线y=x^2与x+y=2所围成?y=x^2与x+y=2的交点(1,1)(-2,4)S=∫(-2,1)(2-x-x^2)dx=(2x-x^2/2-x^3/3)|(-2,1)=(1-1/2-1/3)-

计算∫∫sin(y^2)dx dy D 由直线x=0,y=1,y=x所围城的闭区域

∫∫sin(y^2)dxdy=∫sin(y^2)dy∫dx=∫y*sin(y^2)dy=(1/2)∫sin(y^2)d(y^2)=(1/2)(cos0-cos1)=(1-cos1)/2.

计算由抛物线y=x^2与直线y= x,y=2x所围图形的面积

先计算y=x²与y=2x所围成的面积计算y=x²与y=2x的交点,即y=2x=x²,解方程得两交点为(0,0)和(2,4)∴S1=∫(0,2)(2x-x²)dx

利用二重积分计算由y^2=2x,y=x所围成的闭区域的面积

∫(0~2)dy∫(y^2/2~y)dx=∫(0~2)(y-y^2/2)dy=2/3

计算∫∫e^(-y^2)dxdy 其中D是由y=x,y=1及y轴所围成的区域

先对x积分在对y积分∫∫e^(-y^2)dxdy=∫(0,1)[∫(0,y)e^(-y^2)dx]dy=∫(0,1)ye^(-y^2)dy=-1/2∫(0,1)e^(-y^2)d(-y^2)=-e(-

计算由直线y=x-4,曲线y=根号2x以及x轴所围成的面积S

先解两直线y=√2*x和y=x-4的交点A(-4(1+√2),-4(2+√2))再解出直线y=x-4与x轴的交点B(4,0),那么△AOB为所求.S=1/2*4*|-4(2+√2)|=8(2+√2)

微积分二重积分问题3计算∫∫ (sinx/x)dxdy ,其中D是由直线y=x ,y=x^2所围成的区域

令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限

计算二重积分∫∫x平方ydб,是由抛物线y平方= x及直线y=x-2所围成的闭区域

二重积分化为二次积分时,确定积分限是一个关键.由已知条件得,积分区域为x∈[1,4],y∈[-1,2]   先对x积分再对y积分,(如先对y积分后对x积分,区域要分二部分

求教:利用定积分计算由曲线y=x^3 - 6x和y=x^2所围成的图形面积.

主要是计算烦组合两个函数,求得两个交点是x=-2或3据图象,区间(-2,0)y=x^3-6x在上面,用牛莱公式,中间的f(x)是x^3-6x-x^2区间(0,3)时y=x^2在上面,同上,f(x)是x