计算相关系数的显著性检验
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:02:17
t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性.各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系
以我的2010英文版EXEL为例,先找ADD-IN,添加数据分析工具dataanalysistool.Add-in的选项在File->Option->AddIns,选择analysistoolpack
显著性检验的原理就是“小概率事件实际不可能性原理”来接受或否定假设.其基本步骤如下:第一:提出统计假设H0和HA.第二:构造统计量t,并根据样本资料计算t值.第三:根据t分布的自由度,确定理论临界值t
相关系数用来描述两组数据之间线性依赖的程度(的大小).两组数据之间的相关系数得出的值是0.213,表明两组数据之间的线性依赖程度很低、相关性很小.而差异性检验中差异显著与否与相关性的大小好象是不同的概
sig说明你的变量之间肯定存在相关关系,相关系数非常小说明你的相关是很弱很弱的相关,要是说显著性的话,毫无疑问你的数据肯定是显著相关的,只是相关很弱.ppv课,大数据培训专家,最权威的学习网站,学习s
相关系数0.624大约属于中等量级的相关,在样本量足够大的情况下一般都会有显著性,你的情况应该是样本量偏小造成的.此外,pearson相关系数的正确性需要得到散点图的证实,你应该检查一下散点图,看看数
显著性检验的基本思想可以用小概率原理来解释.1.小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中事件事实上发生了.那只能认为事件不是来自我们假设的总体,也就是认为我们对总体所做的
相关性系数1≤|r|≥0,一般认为|r|≥0.6时认为相关性是显著的,具体的怎么去计算要查统计学上的r(n-2)分布表,它与回归方程Y=a+bx中的b有相同的正负符号!
符号打不出
在你整理好需要进行相关系数计算的矩阵后,如x,直接利用下面一句代码就可以实现:[r,p]=corrcoef(x)p矩阵就是所求的检验结果,具体函数的作用可以利用帮助查找helpcorrcoef希望有用
你学统计学的不是有条件吗?应该是这样的可以拒绝原假设
取0.05就是置信度为95%,取0.01置信度就是99%.具体选哪个就看得到的结果了,如有大部分都得P值都非常小,那就取0.01了,要是P值都很大,那就取0.05好了.一般情况下,0.05就可以,当然
相关系数的显著性检验的目的是为了检验两个变量之间样本相关系数r(r≠0)与一个相关系数=0的已知总体之间的差别是否是由于抽样误差所产生的,如果差别有统计学意义,则说明两个变量之间存在相关关系.在已经检
本例中要求的相关系数临界值r0是多少?已知f=n-2=8-2=6,若α=0.05,则查表知r0=0.707.利用所求回归直线方程预测成本会存在一定的误差,为了鉴别回归直线对预测值的可能的波动范围,需要
这里主要关注两个信息就够了,一个是n,那就是你的样本容量,比如n=100的话就是有100个被试,也即100组配对的数据.根据你的样本量找到检验表里对应的行.另一个就是根据你定的显著性水平来看显著性,一
一,首先算出不同分布所对应的待定值a二,然后根据分布值表查出在不同的显著性水平下的值a1二,比较二者的大小就可判断:如果前者大则拒绝反之接受.具体的例子可以看一下大学的数理统计,不同的分布有不同的结果
取0.05就是置信度为95%,取0.01置信度就是99%.具体选哪个就看得到的结果了,如有大部分都得P值都非常小,那就取0.01了,要是P值都很大,那就取0.05好了.一般情况下,0.05就可以,当然
1、找到相关系数显著性检验表;2、然后确定自由度(n-m-1),n,m分别代表样本个数和未知量维度;3、查找a0.01,a0.05,a.010对应的值;4、将相关系数r与a比较,确定显著性水平.
检验的显著性水平是(B)显著性水平是人们事先指定的犯第Ⅰ类错误的最大允许值.显著性水平越小,犯第一类错误的可能性自然就越小,但犯第二类错误的可能性则随之增大.确定了显著性水平就等于控制了犯第Ⅰ类错误的
这个问题可以用灰色系统理论来解决(其实很简单,只要套用一些公式,术语就行,但我课本不在身边,所以只能把基本思路说一下)专家给分1.把专家给的排名化成百分制,专家给分用X表示,观众用Y2.把数列X中各项