计算积分1 (z-i 2)(z 1)dz 其中C为|z|=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:13:50
计算积分1 (z-i 2)(z 1)dz 其中C为|z|=2
已知Z为复数,且|z|=1,且Z1=Z^2-Z+3,求|Z1|的最大值和最小值

因为|z|=1,所以Z^2一定=1,所以Z1=4-Z;又因为z=1或者-1,所以当z=1时,Z1=3;当z=-1时,Z1=5;所以|Z1|的最大值和最小值分别是3,5.

若复数Z1满足Z1=i(2-Z1) (i为虚数单位)若|Z|=1,求|Z-Z1|的最大值

先计算Z1.Z1(1+i)=2i,因此Z1=1+i;令Z=cosθ+isinθ,则|Z-Z1|=√[(1-cosθ)^2+(1-sinθ)^2]=√(3-2cosθ-2sinθ)=√[3-2√2sin

已知集合A={z||z-2|≤2},B={z|z=1/2(z1)i+b,z1∈A,b∈R}

A={z||z-2|≤2},B={z|z=1/2(z1)i+b,z1∈A,b∈R}设z=a+biz-2=a-2+bi(a-2)^2+b^2≤4a∈[0,4]b∈[-2,2]B:z=(a+bi)i/2+

设复数z满足1−z1+z=i,则|1+z|=(  )

由于1−z1+z=i,所以1-z=i+zi所以z=1−i1+i═(1−i)(1−i)(1+i)(1−i)=−2i2=−i则|1+z|=|1−i|=2故选C.

已知z1=5+10i,z2=3-4i,1/z=1/z1+1/z2,求z.

1/z=(z1+z2)/(z1z2)z=(5+10i)(3-4i)/(5+10i+3-4i)=(15+40-20i+30i)/(8+6i)=(55-10i)(8-6i)/(8+6i)(8-6i)=5(

设Z1,Z2是实系数一元二次方程的两个虚根,且丨z1丨=根号2,z1+z2=2. (1)求z1,z

解1由题知z1,z2为共轭复数又由z1+z2=2解得z1,z2的实部为1又由丨z1丨=根号2,知z1的虚部为±1故z1=1+i,z2=1-i或z1=1-i,z2=1+i2由z1+z1=2z1z2=2构

复变函数计算积分∮1/(z-i/2)*(z+1)dz,其中c为|z|=2

这题也用不了柯西积分公式啊,用柯西积分公式需要能把被积函数化成一定的形式,本题用和柯西积分公式本质相同的留数定理计算.被积函数只要z=i/2和z=-1两个一级极点,并且它们都在积分圆周|z|=2内部,

计算积分∮|z|=1 (3z+5)/(z^2+2z+4) dz的值,

z²+2z+4=0的根为:[-2±√(4-16)]/2=-1±i√3这两个点均不在单位圆内,因此被积函数在单位圆内解析,所以本题积分结果为0希望可以帮到你,如果解决了问题,请点下面的"选为满

用留数计算对e^z/(z^2*(2z+1))的求积分,解析范围是|x+1|=2

e^z/(z^2*(2z+1))在|x+1|=2上有两个奇点,分别是z=0,二级奇点,和z=-1/2,一级奇点.则res(f(0))=(e^z/(2z+1))的导数再取z=0,即-1,同理z=-1/2

求积分计算f{|z|=pi}(z/(z+1))*(e^(2/(z+1)))dz

f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|

复变函数计算积分问题圆周|z|=2.求∮ z/(z-1)dz

是2πi.用柯西积分公式f(z0)=1/2πi∮f(z)/(z-z0)dz.可以令f(z)=z,则z0=1,所以此积分为2πi.

当z=-1-i2

∵z=-1-i2=22-22i∴z2=12-2×22×22i+(22i)2=-i,可得z4=-1根据复数乘方的含义,可得z100=(z4)25=-1,z50=(z4)12•z2=-i∴z100+z50

已知z1=1+2i,z2=2-i,1/z=z1+z2,

z1=1+2i,z2=2-i,z1+z2=1+2i+2-i=3+i1/z=3+iz=1/(3+i)=(3-i)/(3+i)(3-i)=1/10(3-i)=3/10-1/10i

已知复数z1=-2根号3-2i,z2=-1+(根号3)i,求:(1)计算z=z1/z2

(1)z1=-2√3-2iz2=-1+√3iz=z1/z2=(-2√3-2i)/(-1+√3i)上下同乘以(-1-√3i)得:z=(-2√3-2i)*(-1-√3i)/(1+3)=8i/4=2iz=2

利用留数定理计算积分∫{[ln(1+z)]/z}dz,C:|z|=2

在C内(|z|=2),z=0是f(z)=[ln(1+z)]/z的孤立奇点,但z=-1不是f(z)的孤立奇点,ln(1+z)在z=-1以及小于-1的负实轴上不解析,所以f(z)在z=-1以及小于-1的负

已知虚数z使得z1=z1+z

z1=z1+z2化为:z1+z1z2=z…①,z2=z21+z化为:z2+z2z=z2…②,②代入①可得:z1+z1(z2+z2z)=z,即z1+z1•z2+(z2z1-1)•z=0,∵z1=z1+z

用matlab计算1/(z^100-1)在圆路径|z|=2^(1/2)的积分,

symszt;z=sqrt(2)*cos(t)+i*sqrt(2)*sin(t);f=1/(z^100-1);inc=int(f*diff(z),t,0,2*pi)inc=0

设复数z1≠1,(z1-1)/(z1+1)为纯虚数,求复数z=4/(1+z1)^2所对应的点的轨迹方程

设z1=a+bi,其中a、b是实数.则(z1-1)/(z1+1)=[(a-1)+bi]/[(a+1)+bi]=[(a²-1+b²)+(2b)i]/[(a+1)²+b&su