计算积分∫z的平方减一除以z3(3z-1)的平方乘以dz
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:26:40
∫xdx/√(1-x²)=(1/2)∫2xdx/√(1-x²)=(1/2)∫dx²/√(1-x²)=-(1/2)∫d(-x²)/√(1-x²
设x=sint,dx=costdt,(以下省略积分符号)原式=[(sint)^2/cost]costdt=(sint)^2dt=(1-cos2t)/2*dt=1/2[dt-cos2tdt)=1/2t-
y=√(a²-x²)x²+y²=a²因为y>=0所以是圆的上半部分,即半圆积分限是0到a而√(a²-x²)中-a
你的BMI指数=65÷(1.73×1.73)=21.7属于很标准的体重
因为用完高斯公式后是三重积分,三重积分的积分区域中x²+y²+z²≤1,并不等于1.因此不能用1来代替x²+y²+z².有个很简单的方法记住
二分之根号2乘以arctan[(x-1)/根号(2x)]+四分之根号2乘以lnabs[(x+根号2x+1)/(x-2x+1)]+C
两个以z轴为中心轴,原点为顶点的圆锥面
处理这类比例问题,有一个通用方法如果:x:y:z=a:b:c可以设x=aky=bkz=ck带入计算,就行了自己来试试吧~
题目中z=0表示的就是xoy平面,画个大概的立体图容易知道,此时所求的区域在Z正半轴,Z>0,当x=y且z=xy时,x=y=0,x=1是x的积分上限,若被积区域在x>1的范围,就不能构成封闭的积分区域
z²+2z+4=0的根为:[-2±√(4-16)]/2=-1±i√3这两个点均不在单位圆内,因此被积函数在单位圆内解析,所以本题积分结果为0希望可以帮到你,如果解决了问题,请点下面的"选为满
e^z/(z^2*(2z+1))在|x+1|=2上有两个奇点,分别是z=0,二级奇点,和z=-1/2,一级奇点.则res(f(0))=(e^z/(2z+1))的导数再取z=0,即-1,同理z=-1/2
2/(x²-1)+1/(x+1)=1去分母,两边乘以最简公分母x²-12+x-1=x²-1x²-x-2=0(x+1)(x-2)=0x1=-1,x2=2当x=-1
z的11次方加z的7次方加z3次方=(z^11+z^10+z^9)-(z^10+z^9+z^8)+(z^8+z^7+z^6)-(z^6+z^5+z^4)+(z^5+z^4+z^3)=(z^9)(z^2
根据高斯公式可得∫∫(x+y)dydz+(y+z)dzdx+(z+x)dxdy=∫∫∫dxdydz+dydzdx+dzdxdy=3∫∫∫dxdydz=3{∑围成的体积}=3pai*a^2,
在C内(|z|=2),z=0是f(z)=[ln(1+z)]/z的孤立奇点,但z=-1不是f(z)的孤立奇点,ln(1+z)在z=-1以及小于-1的负实轴上不解析,所以f(z)在z=-1以及小于-1的负
感觉是你写错了,应该是下面的这个吧(x+y-z)²-(x-y+z)²=[(x+y-z)-(x-y+z)][(x+y-z)+(x-y+z)]=(x+y-z-x+y-z)(x+y-z+
累次积分,投影到xoy面上,先对Z积分,积分限(0,xy),再对y积分(0,x),x积分(0,1)=1/28*13
这个很简单啊,和实数的积分是完全类似的.∫[0→i]e^-zdz=-e^(-z)[0→i]=1-e^(-i)=1-cos1+isin1
令z=re^(iθ),则z共轭=re^(-iθ),dz=rie^(iθ)dθ,|z|=r,所以积分=∮rdθ,这里r=2,所以积分=2∮dθ(积分限0到2π)=4π