计算积分∫▒e^z ((z 2) sinz ) dz
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:20:41
为啥没有下面的部分呢?条件不足.把问题修正一下.计算曲面积分∫∫Σx²dS,其中Σ为上球面z=√(1-x²-y²),x²+y²=1被z=-h所截得的部
∫cos(lnx)dx令u=lnx,x=e^u,dx=(e^u)du当x=1,u=0;当x=e,u=1原式=∫(e^u)cos(u)du=∫e^ud(sinu)=(e^u)sinu-∫sinud(e^
e^z/(z^2*(2z+1))在|x+1|=2上有两个奇点,分别是z=0,二级奇点,和z=-1/2,一级奇点.则res(f(0))=(e^z/(2z+1))的导数再取z=0,即-1,同理z=-1/2
用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3
柯西积分公式原式=2πie^z|z=0=2πi希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
因为曲线L位于圆周上,所以x2+y2+z2=a2故∫L(x2+y2+z2)ds=a2∫Lds=a^2*2PI*a=2PI*a^3
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
球坐标变换,然后得到:原积分=∫(0到2∏)dΘ∫(0到П)sinφdφ∫(0到1)r^4dr=2П*2*(1/5)=4П/5.
根据高斯公式可得∫∫(x+y)dydz+(y+z)dzdx+(z+x)dxdy=∫∫∫dxdydz+dydzdx+dzdxdy=3∫∫∫dxdydz=3{∑围成的体积}=3pai*a^2,
∫(0~+∞)e^(-√x)dx令√x=t,x=t²,dx=2tdt=∫(0~+∞)e^(-t)*2tdt=-2∫(0~+∞)td[e^(-t)]=-2[te^(-t)]|(0~+∞)+2∫
dS=√(1+4x^2+4y^2)dxdy,投影:x^2+y^2《1I=∫∫1/(x^2+y^2+(x^2+y^2)^2)*√(1+4x^2+4y^2)dxdy+∫∫1/(x^2+y^2+1)*dxd
在C内(|z|=2),z=0是f(z)=[ln(1+z)]/z的孤立奇点,但z=-1不是f(z)的孤立奇点,ln(1+z)在z=-1以及小于-1的负实轴上不解析,所以f(z)在z=-1以及小于-1的负
设y=e^x,则x=lny,dx=dy/y∫(e^(2x)+2e^(3x)+2)e^xdx=∫((e^x)^2+2*(e^x)^3+2)e^xdx=∫(y^2+2*y^3+2)y*dy/y*=∫(y^
这个很简单啊,和实数的积分是完全类似的.∫[0→i]e^-zdz=-e^(-z)[0→i]=1-e^(-i)=1-cos1+isin1
这题用高斯公式做简单,做辅助曲面S‘:z=0,则S+S'构成闭合曲面,取外侧为正.设P=(x^3+e^ysinz,Q=-3x^2y,R=z,则ðP/ðx=3x^2,ðQ/