计算积分∮C((2z²-z 1) (z-1))dz,其中C为|z|=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:09:45
计算积分∮C((2z²-z 1) (z-1))dz,其中C为|z|=2
若复数Z1满足Z1=i(2-Z1) (i为虚数单位)若|Z|=1,求|Z-Z1|的最大值

先计算Z1.Z1(1+i)=2i,因此Z1=1+i;令Z=cosθ+isinθ,则|Z-Z1|=√[(1-cosθ)^2+(1-sinθ)^2]=√(3-2cosθ-2sinθ)=√[3-2√2sin

设Z1,Z2是实系数一元二次方程的两个虚根,且丨z1丨=根号2,z1+z2=2. (1)求z1,z

解1由题知z1,z2为共轭复数又由z1+z2=2解得z1,z2的实部为1又由丨z1丨=根号2,知z1的虚部为±1故z1=1+i,z2=1-i或z1=1-i,z2=1+i2由z1+z1=2z1z2=2构

复变函数计算积分∮1/(z-i/2)*(z+1)dz,其中c为|z|=2

这题也用不了柯西积分公式啊,用柯西积分公式需要能把被积函数化成一定的形式,本题用和柯西积分公式本质相同的留数定理计算.被积函数只要z=i/2和z=-1两个一级极点,并且它们都在积分圆周|z|=2内部,

一道复变函数积分题目C:|z|=2/3(z^2+2z+1)(z^2+1)

因为f(z)=1/(z^2+2z+1)(z^+1)在/z/再问:和我想的一样。不过我有个同学说这题能用留数解出,你确定f(z)在C内没有极点?没有极点还能用留数解?再答:因为在C没无极点,所以留数为零

计算积分∮|z|=1 (3z+5)/(z^2+2z+4) dz的值,

z²+2z+4=0的根为:[-2±√(4-16)]/2=-1±i√3这两个点均不在单位圆内,因此被积函数在单位圆内解析,所以本题积分结果为0希望可以帮到你,如果解决了问题,请点下面的"选为满

用留数计算对e^z/(z^2*(2z+1))的求积分,解析范围是|x+1|=2

e^z/(z^2*(2z+1))在|x+1|=2上有两个奇点,分别是z=0,二级奇点,和z=-1/2,一级奇点.则res(f(0))=(e^z/(2z+1))的导数再取z=0,即-1,同理z=-1/2

排球比赛中,若积分相等 是先计算 C值 还是Z值啊

如遇两队或两队的积分相等,则采用下列办法决定名次:A(胜局总数)/B(负局总数)=C值,C值高者名次列前.如C值仍相等,则采用:X(总得分数)/Y(总失分数)=Z值,Z值高者名次列前.

求积分计算f{|z|=pi}(z/(z+1))*(e^(2/(z+1)))dz

f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|

复变函数计算积分问题圆周|z|=2.求∮ z/(z-1)dz

是2πi.用柯西积分公式f(z0)=1/2πi∮f(z)/(z-z0)dz.可以令f(z)=z,则z0=1,所以此积分为2πi.

已知z1=1+2i,z2=2-i,1/z=z1+z2,

z1=1+2i,z2=2-i,z1+z2=1+2i+2-i=3+i1/z=3+iz=1/(3+i)=(3-i)/(3+i)(3-i)=1/10(3-i)=3/10-1/10i

已知复数z1=-2根号3-2i,z2=-1+(根号3)i,求:(1)计算z=z1/z2

(1)z1=-2√3-2iz2=-1+√3iz=z1/z2=(-2√3-2i)/(-1+√3i)上下同乘以(-1-√3i)得:z=(-2√3-2i)*(-1-√3i)/(1+3)=8i/4=2iz=2

z是复数 z1=-3i |z-z1|=2 求|z| 最大值

|z-z1|=2表示在复平面上以z1=-3i为心半径为2的圆,在这个圆上到原点最远的点是-5i,即|z|的最大值为5

利用高斯公式计算曲面积分∑xdydz+ydzdx+zdxdy,其中∑为球面(x-a)^2+(y-b) ^2+(z-c)

伙计这个(x-a)^2+(y-b)^2+(z-c)^2是球面吗?不是的,它是屁.令(x-a)^2+(y-b)^2+(z-c)^2=R^2才是,首先要加一个平面z=c取下侧面,才能用高斯公式原式=∫∫∫

设f(z)=z(z属于C),z1=3+4i,z2=-2-i,则f(z1-z2)等于?

f(z1-z2)=z1-z2=(3+4i)-(-2-i)=3+4i+2+i=5+5i

利用留数定理计算积分∫{[ln(1+z)]/z}dz,C:|z|=2

在C内(|z|=2),z=0是f(z)=[ln(1+z)]/z的孤立奇点,但z=-1不是f(z)的孤立奇点,ln(1+z)在z=-1以及小于-1的负实轴上不解析,所以f(z)在z=-1以及小于-1的负

计算积分∮c :z的共轭复数/|z|dz的值,其中c为正向圆周|z|=2

令z=re^(iθ),则z共轭=re^(-iθ),dz=rie^(iθ)dθ,|z|=r,所以积分=∮rdθ,这里r=2,所以积分=2∮dθ(积分限0到2π)=4π

设复数z1≠1,(z1-1)/(z1+1)为纯虚数,求复数z=4/(1+z1)^2所对应的点的轨迹方程

设z1=a+bi,其中a、b是实数.则(z1-1)/(z1+1)=[(a-1)+bi]/[(a+1)+bi]=[(a²-1+b²)+(2b)i]/[(a+1)²+b&su