讨论函数f(x)=lim(1-x^n) (1 x^n)*x的连续性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:52:57
当x趋近于0+时F(x)=lim(n→∞)(1-x^2n)÷(1+x^2n)x趋近于1÷1*0+=+∞当x趋近于0-时F(x)=lim(n→∞)(1-x^2n)÷(1+x^2n)x趋近于1÷1*0-=
f'(x)=1/x+1-2a令其等于0解得x=1/(2a-1)因为f(x)的定义域是x>0当2a-11/2时,f(x)在(0,1/(2a-1))单调递减,在(1/(2a-1),正无穷)单调递增
这个是数学大纲解析的习题呢~解这一类的题,其实有个套路,就是先通过求极限将f(x)的表达式求出来就可以解啦~步骤如下:1、先求lim(1-x^2n/1+x^2n)x,(n->∞):f(x)=0,当x=
∵f(x)=lim(n->∞)[(1+x)/(1+x^2n)]∴当│x│1时,f(x)=0∴函数f(x)有可能是间断点的点只能是点x=±1∵lim(x->-1+)f(x)=lim(x->-1+)(1+
当|x|1时,f(x)=-x,作图知为跳跃间断点
F(x)=lim(n→∞)x*(1+x^2n)/(1-x^2n)whenx=1or-1F(x)isundefinedF(x)在x=1or-1不连续if|x|1lim(n→∞)x*(1+x^2n)/(1
f(x)=a+ax−1,f(x)图象是由反比例函数y=ax,向右平移1个单位在向上或下平移|a|单位得到的,∵a<0时,y=ax在(-∞,0),和(0,+∞)上分别为增函数,a>0时,y=ax在(-∞
f(x)=ax/x^2-1=a/x-1x不能为0,所以x取(-1,0)和(0,1)当a>0时,函数f(x)在(-1,0)和(0,1)上是单调递增的;当a
必须的啊,x→1+,指x从1的右边趋近于1,1的右边是大于1的,当然对应函数是当x>1时的函数表达式.再问:是趋近-1+时候再问:难道是只取最临近的区间?再答:是的~再答:那就是从-1的左边趋近于-1
有分母的情况下不能直接求导而因根据公式来至于公式翻下书吧f'(x)=(-a-ax^2)/(x^2-1)^2因为(x^2-1)^2>=0所以只讨论(-a-ax^2)的正负即讨论[-a(x^2+1)]的正
再问:第一行是为什么再答:在第二行第三行里证明了,而且这个等式不仅仅对于两个数a,b是成立的,对于k个数也是成立的,证明都一样的再问:太感谢了
方法一:lim(x→a){[f(2x-a)-f(2a-x)]/(x-a)}=lim(x→a){[f(2x-a)-f(2x-a-3(x-a))]/(x-a)}=3*lim(x→a){[f(2x-a)-f
这里就相当于先把x看作常数,然后得到n趋于无穷的时候,f(x)与x的关系│x│1,那么n趋于无穷时,x^n趋于无穷,于是(1-x^2n)/(1+x^2n)=-1所以f(x)=-x
f`(x)=a(x+1)/(1-x)因为x+1>0,(1-x)>0→当a>0,f`(x)>0,f(x)↑→当a
∵y=lim(x->∞){[(1-x^2n)/(1+x^2n)]x}∴当│x│1时,y=-x∵lim(x->1+)y=lim(x->1+)(-x)=-1lim(x->1-)y=lim(x->1-)(x
当|x|>1则F(x)=lim(n→∞)(1/x^2)^n-1)/((1/x^2)^n+1)×x=(-1)/1×x=-x当|x|1