n元线性方程组Ax=b有两个不等的解r(A)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:41:38
n元线性方程组Ax=b有两个不等的解r(A)
设A是n阶方阵,则齐次线性方程组AX=0有非零解的充要条件是非齐次线性方程组 AX=b有无穷多解 这句话对吗?

不对.Ax=b有无穷多解,A不满秩,Ax=0有非零解;反之未必,Ax=0有非零解,A不满秩,但Ax=b可能无解.如有解则有无穷多解.

设非齐次线性方程组AX=b有唯一解,A为mxn矩阵,则必有秩(A)=n.具体在问题补充

Ax=b有解的条件是r(A)=r(A|b),所以D肯定不对,因为它没有考虑增广矩阵C显然不对,因为m=n不保证A满秩A显然对,因为r(A)=m,而r(A|b)不可能比m大,因为A|b只有m行,秩不可能

非齐次线性方程组AX=B有解的充要条件是

AX=B有解的充要条件是r(A,B)=r(A)

非齐次线性方程组Ax=B有无穷解的充要条件

未知数的个数多于方程的个数;比如三个未知数:X,Y,Z;两个方程:X+Y+Z=100X-Y+Z=1X=(101-2Z)/2Z任意Y=99/2无穷多组解用较专业一点的说法,非齐次线性方程组Ax=B有无穷

n元线性方程组AX=b有唯一解的充分必要条件是 为什么不是秩A=n

n元线性方程组AX=b有唯一解的充分必要条件是r(A)=r(A,b)=nr(A)=n并不能保证r(A)=r(A,b)比如增广矩阵=111011001r(A)=2,r(A,b)=3

设A是m*n矩阵,非齐次线性方程组Ax=b有解的充分条件是

若m>n则r(A)≤min(m,n)≤n若m=n则r(A)=n=m若m

6.设n元非齐次线性方程组Ax=b的系数矩阵A的秩为n-1,a1,a2为该方程的两个解,

因为矩阵A的秩为n-1,所以齐次线性方程组AX=0的基础解系含有的向量数目为1,a1,a2为Ax=b的两个解,所以a1-a2为AX=0的一个解,若a1-a2非零,则a1-a2就是AX=0的一个基础解系

设n元非齐次线性方程组AX=B有解,其中A为(n+1)×n矩阵,则|(A|B)|=

设n元非齐次线性方程组AX=B有解,其中A为(n+1)×n矩阵,则|(A|B)|=0再问:怎么算的,为什么?再答:AX=B有解,所以A的秩等于(A|B)的秩,所以(A|B)不是满秩的。

线性方程组有唯一解n元线性方程组Ax=b 线性方程组有唯一解 R(A)=R(A,b)=n怎么看n等于多少?也就是怎么看一

很明显b=2,a不等于1时r(A)=3=n,你见过3个向量组的秩为4的吗?你理解错了.

n元非齐次线性方程组Ax=b与其对应的其次线性方程组Ax=0满足( )

a,b,d正确.a:Ax=0有仅有0解,A为满秩矩阵,则A的行秩=N,则A的增广阵行秩也为N,则A的增广阵秩为N,由判定定理可得结论;b:Ax=b有无穷多个解,由非齐次判定定理R(A,b)=R(A)<

设A是n阶方阵,当条件( ) 成立时,n元线性方程组AX=b有唯一解

设B=(A,b)也就是把b这一列添加到矩阵A的右侧形成一个新的矩阵B,如果B的秩等于矩阵A的秩,那么方程组有唯一解,答案可以写成r(A,b)=r(A)

1、设A是n阶方阵,当条件(?)成立时,n元线性方程组AX=b有唯一解.A:r(A)=n B:r(A)<n

1.A(当A是满秩阵时,AX=b有唯一解)2.答案:06(设λ为A的特征值,p为λ对应的特征向量,则Ap=λp;两边同时乘以3得3Ap=3λp,即(3A)p=(3λ)p,即3A特征值是A的3倍)3.(

n元线性方程组Ax=b有唯一解的充要条件是(  )

由于n元线性方程组Ax=b有唯一解的充要条件r(A)=r(.A)=n①选项A.导出组Ax=0仅有零解只能说明r(A)=n,并不能保证r(A)=r(.A)=n,故A错误;②选项B.n元线性方程组Ax=b

N元线性方程组 AX=0 只有零解那么A为N元方阵对吗

AX=0只有零解,可推出:R(A)=N.即A的秩为N.而A可为k*N矩阵,其中k>=N.即A不一定是N阶方阵.