n元齐次方线性方程组Ax=0只有零解的充要条件守纪R﹙A﹚=多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:19:32
n元齐次方线性方程组Ax=0只有零解的充要条件守纪R﹙A﹚=多少
设a1,a2,a3是齐次线性方程组AX=0的基础解系,n是非齐次线性方程组AX=b的解.证明:(1)a1,a2,a3,n

(1)你学过核空间的概念吧,即K(A),即使得AX=0成立的所有向量构成的集合,根据题意,那么a1,a2,a3为A矩阵核空间的中的向量.假设a1,a2,a3,n线性相关,那么有n=ma1+na2+ha

设A是n阶方阵,则齐次线性方程组AX=0有非零解的充要条件是非齐次线性方程组 AX=b有无穷多解 这句话对吗?

不对.Ax=b有无穷多解,A不满秩,Ax=0有非零解;反之未必,Ax=0有非零解,A不满秩,但Ax=b可能无解.如有解则有无穷多解.

设β是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,

证:设k1α1+k2α2+.,+kn-rαn-r+kβ=0.(*)用A左乘等式两边得k1Aα1+k2Aα2+.,+kn-rAαn-r+kAβ=0.由已知β是非齐次线性方程组Ax=b的解,α1,α2,.

设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是(  )

A为m×n矩阵,∴A有m行n列,且方程组有n个未知数 Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.矩阵A有n列,∴A的列向量组线性无关

线性代数:设n元m个方程的齐次线性方程组AX=0的系数矩阵A的秩为n-1,如果矩阵A的每行的元素之和均为0,则线性方程组

系数矩阵A的秩为n-1,则AX=0的基础解系有n-r(A)=1个向量.再由A的每行的元素之和均为0知(1,1,...,1)'是AX=0的一个非零解.所以AX=0的通解是c(1,1,...,1)',c为

设η1与η2是非齐次线性方程组Ax=b的两个不同解(A是m×n矩阵),ξ是对应的齐次线性方程组Ax=0的非零解,证明:

证明:(1)设k1η1+k2(η1-η2)=0,则k1Aη1+k2A(η1-η2)=0已知η1与η2是非齐次线性方程组Ax=b的两个不同解,因此Aη1=Aη2=b∴k1b=0而b≠0∴k1=0∴k2(

n元线性方程组AX=b有唯一解的充分必要条件是 为什么不是秩A=n

n元线性方程组AX=b有唯一解的充分必要条件是r(A)=r(A,b)=nr(A)=n并不能保证r(A)=r(A,b)比如增广矩阵=111011001r(A)=2,r(A,b)=3

n元齐次线性方程组Ax=0有非零解的充分必要条件

有非零解,也就是R(A)小于N.1.那么方程的个数要小于未知数的个数(直观上看这个方程组是扁而长,)2.等价于A的列向量线性相关(对系数矩阵A做列分块可得向量形式:a1x1+a2x2+~~~+anxn

线性方程组有唯一解n元线性方程组Ax=b 线性方程组有唯一解 R(A)=R(A,b)=n怎么看n等于多少?也就是怎么看一

很明显b=2,a不等于1时r(A)=3=n,你见过3个向量组的秩为4的吗?你理解错了.

n元非齐次线性方程组Ax=b与其对应的其次线性方程组Ax=0满足( )

a,b,d正确.a:Ax=0有仅有0解,A为满秩矩阵,则A的行秩=N,则A的增广阵行秩也为N,则A的增广阵秩为N,由判定定理可得结论;b:Ax=b有无穷多个解,由非齐次判定定理R(A,b)=R(A)<

设A是n阶方阵,当条件( ) 成立时,n元线性方程组AX=b有唯一解

设B=(A,b)也就是把b这一列添加到矩阵A的右侧形成一个新的矩阵B,如果B的秩等于矩阵A的秩,那么方程组有唯一解,答案可以写成r(A,b)=r(A)

n元线性方程组Ax=b有唯一解的充要条件是(  )

由于n元线性方程组Ax=b有唯一解的充要条件r(A)=r(.A)=n①选项A.导出组Ax=0仅有零解只能说明r(A)=n,并不能保证r(A)=r(.A)=n,故A错误;②选项B.n元线性方程组Ax=b

N元线性方程组 AX=0 只有零解那么A为N元方阵对吗

AX=0只有零解,可推出:R(A)=N.即A的秩为N.而A可为k*N矩阵,其中k>=N.即A不一定是N阶方阵.

若n元线性方程组AX=0的系数矩阵的秩为r

n元线性方程组AX=0的系数矩阵的秩为