n的阶乘分之一等价无穷小亮
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:56:35
在x=0处泰勒展开,e^x=1+x+x^2/2!+x^3/3!.再问:这个等价无穷小,是不是可以直接用。不需要证明。再答:用的时候看情况,如果x为无穷小量,x^2以后的所有项为高阶无穷小量。不用证明
注意x→0的时候不是tanx=x而是趋于x这个和等号有本质的不同你把tanx和sinx都做taylor展开就看清楚了虽然他们都与x同阶但是高阶部分不同两者相减去掉了高阶的部分还剩下三阶的x
好吧.就按这个来:因f(x)与1/x为无穷小则lim(x→∞)f(x)=0,lim(x→∞)1/x=0因f(x)与1/x为等价无穷小则lim(x→∞)[f(x)/(1/x)]=1即lim(x→∞)[x
等价无穷小的代换是有条件是,适用于乘法运算中,不适用于加减运算.一般教材中都会提到的,千万别随便代入哦.
Limn->无穷1!+2!+3!+n!/n!=1+1/n+1/[n(n-1)]+1/[n(n-1)(n-2)]...+1/n!=1
当x→0时,sinx~tanx;1-cosx~0.5x²而lim【x→0】cosx=1,不是无穷小,所以不存在等价无穷小一说!如果考虑的是x→π/2,则由lim【x→π/2】cosx/[(π
第一题如图
如图:
有加减SO不行
sinx~xtanx~x1-cosx~x^2/2secx-1~x^2/2ln(1+x)~xe^x-1~x(1+x)^a~ax(a不等于0)arcsinx~xarctanx~x
有个等价无穷小是ln(1+x)~x所以ln(1+x^n)~x^n
标准就是相除后取极限等于1比如x→0时,lim(tan2x)/2x=1,所以tan2x等价于2x但lim(tan2x)/3x=2/3,所以tan2x不等价于3x
x当x趋于0
是-x,sin(-x),tan(-x)之类的因为ln(1+x)的等价无穷小是x;sinx;tanx;e^x-1又ln(1-x)=ln[1+(-x)]所以得如上结论
利用等价量代换如图计算,答案是-3.经济数学团队帮你解答,请及时采纳.
错在(2-2sin(x/2)*cos(x/2)/(x/2))=2(2-2cos(x/2))这一步你默认了sinθ/θ=1,实际上本题就是要求出sinθ的更高阶无穷小量,这样忽略“过头”了.事实是,si
当n是正整数时,有乘法公式:a^n-1^n=(a-1)([a^(n-1)+a^(n-2)+…+a+1).
x→0ln(1+x^2)~x^2再问:呜呜,,能不能写详细点,过程呢?拜托了,,再答:lim(x→0)ln(1+x^2)/x^2(0/0,用洛必达法则)=lim(x→0)[2x/(1+x^2)]/(2
再问:第二步怎么出来的,看不懂再答:罗比达法则啊~~再问:但是它上面不为0,怎么是0/0型的未定式呢?再答:不好意思,你这个式子是错的~~再问:哦,是我写错了,谢谢你了再答:呵呵,我一开始也没细看,直
当x→0时, sinx~x tanx~x arcsinx~xarctanx~x1-cosx~(1/2)*(x^2)~secx-1(a^x)-1~x*lna((a^x-1)/x~lna)(e^x)-1~