n维向量组a1,a2--a3(3≦s≦n)线性无关的充要条件是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:37:38
只须证明它们可以互相线性表示.令b1=a1+a2,b2=a2+a3,b3=a3+a1,则向量组{b1,b2,b3}可以用{a1,a2,a3}线性表示,因为b1+b2+b3=(a1+a2)+(a2+a3
(b1,b2,b3,b4)=(a1a2a3a4)KK=1111011100110001因为|K|=1,所以K可逆所以r(b1,b2,b3,b4)=r(a1a2a3a4)=4所以b1,b2,b3,b4线
证(1)设k1B1+k2B2+k3B3+k4B4+k5B5=0则k1(A1+A2)+k2(A2+A3)+k3(A3+A4)+k4(A4+A5)+k5(A5+A1)=0所以(k1+k5)A1+(k1+k
假设a1+a2+a3,a2+a3,a3线性相关,则k1(a1+a2+a3)+k2(a2+a3)+k3a3=0其中k1、k2、k3不全为0.化简成k1a1+(k1+k2)a2+(k1+k2+k3)a3=
可以用反证法来做.假设a1,a2,a3线性相关则a3可以用a1和a2来表示不妨设:a3=ma1+na2则a2+a3=ma1+(n+1)a2a1+a3=(m+1)a1+na2然后尝试用(a1+a2)和(
记X=【a1,a2,...,an】',Y=【B1,...,Bn】'则Y=MX,M是n*n矩阵M写出来就是第i行只有i,i+1项是1(最后一行是第n和第1项)然后你看看M的行列式,用归纳法一下就能求出来
已知n维向量组A:a1,a2线性无关,b1,b2线性无关,且a1,a2分别与b1,b2正交,证明a1,a2,b1,b2线性无关设x1a1+x2a2+y1b1+y2b2=0,证明x1=x2=y1=y2=
设存在一组数,k1,k2,k3使得k1(a1+2a2)+k2(a2+2a3)+k3(a3+2a1)=0整理得:(k1+2k3)a1+(2k1+k2)a2+(2k2+k3)a3=0因为a1,a2,a3线
由A1+A2,A3+A1,A2-kA3线性相关得:存在不全为0的3个数a,b,c,使得a(A1+A2)+b(A3+A1)+c(A2-kA3)=0即(a+b)A1+(a+c)A2+(b-kc)A3=0再
证明:因为(a1+a2,a2+a3,a3+a1)=(a1,a2,a3)KK=101110011而|K|=2≠0,即K可逆.所以r(a1+a2,a2+a3,a3+a1)=r[(a1,a2,a3)K]=r
令kb+k1a1+k2a2+k3a3=0两边用b做内积,得k[b,b]+k1[b,a1]+k2[b,a2]+k3[b,a3]=0因为b与a1,a2,a3分别正交,故[b,a1]=[b,a2]=[b,a
假设:a1+a2、a2+a3、a3+a1是线性相关的,则:a3+a1=m(a1+a2)+n(a2+a3)(m-1)a1+(m+n)a2+(n-1)a3=0因a1、a2、a3线性无关,则:m-1=0且m
a1+2a2,2a2+3a3,a1+2a2+3a3线性无关.r[a1+2a2,2a2+3a3,a1+2a2+3a3]可以求出来,具体为第3列减第二列,然后以此类推,变为a1,a2,a3.
至少有一个向量可由其余向量线性表示
令l1b+a1=x1,l2b+a2=x2,l3b+a3=x3则R(x1,x2,x3)=R(2x1-x2+3x3,x2,x3)=R((2l1-l2+3l3)b,l2b+a2,l3b+a3)=R(b,l2
证明:设有k1,k2,k3使:k1a1+k2a2+k3a3=0因a3不能由a1,a2线性表示,k3=0,故k1a1+k2a2=0因a2不能由a1线性表示,k2=0,故k1a1=0因a1不等于0,所以:
利用反证法1:假定a1,a2,a3线性相关,既存在不全为零的常数m,n,t使得ma1+na2+na3=O.若t!=0,则a3=-(m/t)a1-(n/t)a2,由此a3可由a1,a2线性表示,与已知矛
如果是偶数,则b1-b2+b3-...+b(s-1)=bs,所以s为奇数.
若a1,a2,a3线性相关,则向量组B:a1,a2,a3,a1+a2(线性相关,)