n趋近于无限大时 1 a2 a3 ...an的极限是多少 a的绝对值小于1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:11:07
再问:第二行到第三行是怎么转化的?再答:同除以3^n而3n²/3^n=0;n³/3^n=0
不是说不能直接等于零,而是因为由于对于∞•0型情况的极限不全为零——要看具体情况.如果你做题做多,或者学习过泰勒公式,你应该发现上面的式子的极限不应该是零先给出你提出的问题证明过程,(见附
(x^n-1)/(x-1)=(x-1)[x^(n-1)+x^(n-2)+x^(n-3)+…+x³+x²+1]/(x-1)=[x^(n-1)+x^(n-2)+x^(n-3)+…+x&
令f(n)=n^(1/n),就是函数f(n)等于n的n分之一次方,然后两边取对数,则ln(f(n))=ln(n)/n(右边对数性质)右边当n趋于无穷时候趋于0(这个很显然,n比ln(n)增长快,证明方
本题有误,详细解释见图.点击放大、再点击再放大:
(1)分子分母同除以n^3,得[(n+1)(n-2)(n+3000)]/(2n^3+1)=[(1+1/n)(1-2/n)(1+3000/n)]/(2+1/n^3)此时分子的极限为1,分母的极限为2,所
这道题可以用分子有理化来做极限的符号,用三角代替了.其中有一步用到分子分母同时除以n,
对于任何q>1,n->+∞时,n/(q^n)=0;这个的意思是n->+∞时,指数函数比一次函数增长得要快,这是经常要用到的一个性质.打字很麻烦,关于这个的证明能不能麻烦你自己找一下,应该很容易找到.然
lim√n(√n+1-√n)=lim√n[√(n+1)-√n][√(n+1)+√n]/[√(n+1)+√n]=lim√n[(n+1)-n]/[√(n+1)+√n]=lim√n/[√(n+1)+√n]=
用洛毕达法则.=3再问:请问倒数第三步至倒数第二步怎么得到的再答:因为有如下性质:
1应该是n->无穷大吧1.令x/n=yn=x/yy->0lim(y->0)(1+y)^(x/y)=lim[(1+y)^1/y]^x=e^x2.先换元,再分部令lnx=y则x=e^ydx=e^ydy∫s
等于1(无限趋近于1)
令y=n-ln(n)所以y´=1-1/n当n趋近于无穷大时1/n趋近于0所以y´=1-1/n>0所以函数y在(1,∞)上单调递增当n趋近于无穷大时y也趋近于无穷大所以1/y趋近于0
n趋向于无穷时,ln(e^n+x^n)/n属于无穷比无穷型.用罗比达法则求一次导得(e^n+(x^n)*lnx)/(e^n+x^n)..常数分离得lnx+(1-lnx)/[1+(x/e)^n]讨论:若
注意到当n趋于无穷时,lnn/n的极限是0,因此|lnn*sinn|0.5n,趋于正无穷,于是arctan(n--lnn*sinn)趋于pi/2.再问:为什么|lnn*sinn|
lim(n->∞)[√(n+1)-√n]*√n分子分母同时乘以[√(n+1)+√n=lim(n->∞)√n/[√(n+1)+√n]=lim(n->∞)1/[√(1+1/n)+1]分子分母同时除以√n=
n→∞,limn[ln(n-1)-lnn]=limn*[ln(n-1/n)]=lim[ln(1-1/n)^n]因为函数f(x)=lnx连续,所以归结得:lim[ln(1-1/n)^n]=ln[lim(