N阶实对称矩阵按通常的矩阵加法和数乘构成线性空间的一组基是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:47:33
是.A是对称矩阵,则A^T=A所以(A^n)^T=(A^T)^n=A^n所以A^n仍是对称矩阵A是实矩阵,显然A^n也是实矩阵所以A^n是实对称矩阵.
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对
正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立
利用实Jordan标准型可以证明任何n阶实矩阵都可以分解成两个实对称矩阵的乘积,A可逆可以得到余下的部分再问:能具体说下证明步骤吗?再答:先把A化到实Jordan标准型A=PJP^{-1},然后把J的
取x=(0,...,1,...,0)^T,第i个分量为1,其余为0则x^TAx=aii>0.即得A的主对角线上元素都大于0.再问:x^TAx为什么大于0啊再答:因为A正定
选A. 设A^-1的特征值为a1,a2,...an.则A的特征值为1/a1,1/a2,.1/an.因为所有an都大于0,所以所有1/an大于0.所以选A 另外B项如果改成a11>0以及各阶行列式的
是的这是因为对称矩阵的和仍是对称矩阵
B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)
OK 这个有图片 请点击看大图
对加法构成加法交换群.对乘法只满足结合侓,且有单位无,故构成含幺半群
因为矩阵的加法运算满足交换,结合,有零矩阵,有负矩阵矩阵的数乘运算也满足相应的4条运算性质所以若证明n阶对称阵对矩阵加法及矩阵的数乘构成数域R上的线性空间,只需证明n阶对称阵对矩阵加法及矩阵的数乘运算
如图再问:这个题还需要证唯一性,唯一性怎么证呢?再答:不好意思,唯一性想不出来。
记E(ij)是第i行第j列元素为1,其余元素是0的矩阵,则E(ij)+E(ji),1
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
这种结论显然是错的,并且讨论特征值的时候是否奇异一般不重要,因为可以做位移有一个比较相近的结论n阶实对称不可约三对角矩阵具有n个互不相同的实特征值证明毫无难度,你自己去证
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
不一定