n阶方阵ABC满足AB=BC=CA=E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:39:49
没有一般的充要条件.只是充分条件的话,貌似有一个是正交阵就可以?
因为 R(AB)=0所以 AB=0所以 R(A)+R(B)<=n.(C) 正确 搞定请采纳...
AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA
4正确.ABC=E根据结合律,得A(BC)=E等式两边取行列式,得|ABC|=|E|=1因为|ABC|=|A(BC)|=|A|*|BC|=1所以|A|!=0所以A可逆.等式两边左乘A逆,右乘A,得A逆
由于AB=BA所以(A+B)^3=0可以展开成A(A^2+3AB+3B^2)=-B^3两边取行列式得|A||A^2+3AB+3B^2|=(-a)^n|B|^3由B可逆知右边不是0.所以|A|一定不能为
答案是≤假设A=O,B=O显然满足题意AB=O此时R(A)+R(B)=0假设A=E,B=O显然也满足题意AB=O此时R(A)+R(B)=n综上R(A)+R(B)≤n
证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵
要用到若尔当矩阵,你学过没?比较长,我要是打了,你能立即把分给我不?
1、A+B+AB=0,A+B+AB+E=E,(E+A)(E+B)=E,所以E+A与E+B可逆且互为逆矩阵.所以(E+B)(E+A)=E,E+A+B+BA=E,A+B+BA=0.将A+B+AB=0与A+
AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0
由题得︱A︱︱B︱=︱E︱=1,∵︱A︱=-5,∴︱B︱=-1/5
由ABC=E,可知:A-1=BC,C-1=AB,∴A-1A=BCA=E,CC-1=CAB=E,故选:D.
(A-I)(B-I)=AB-A-B+I=I所以A-I和B-I都不能为0,即(A-I)和(B-I)都是可逆的.
由ABC=E则(AB)C=E,AB与C互逆,故有CAB=E同理有A(BC)=E,A与BC互逆,故有BCA=E.
AB-A-B=OAB-A-B+E=E(A-E)(B-E)=E所以A-E可逆,逆为B-E再问:为什么(A-E)(B-E)=E?这个步骤能说清楚点吗?再答:AB-A-B+E=A(B-E)-(B-E)=(A
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
证明:分两步(1)ABX=0与BX=0同解显然,BX=0的解都是ABX=0的解所以BX=0的基础解系可由ABX=0的基础解系线性表示.由已知r(B)=r(AB)所以两个基础解系所含向量个数相同故两个基
由矩阵迹的性质知tr(AB-BA)=tr(AB)-tr(BA)=0,而tr(E)=n,两者不可能相等
不一定成立举反例就行了