设 , 均为复数域上的 阶矩阵,有 ,则存在 阶可逆矩阵 , 使得 , .

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:07:31
设 , 均为复数域上的 阶矩阵,有 ,则存在 阶可逆矩阵 , 使得 , .
又来叨扰你了矩阵M为主对角分块为AB 两个副对角块均为0的分块矩阵 答案上有一句话说已知M为正定矩阵 则M的各阶顺序主子

超过A的阶的顺序主子式等于|A|乘B块的顺序主子式由于|A|>0所以B的顺序主子式也都大于0.事实上有个结论,A正定的充要条件是A的主子式(注意:不是顺序主子式)都大于0由此结论直接可知B块的顺序主子

设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵

参考一下再问:有没有更简单的方法?我们好像没学到过那条推论啊。。。QAQ再答:行列式拉普拉斯展开式有没有学过?

设A,B均为有m行的矩阵,证明:max{R(A),R(B)}

A的列向量可由(A,B)的列向量组线性表示所以r(A)

c语言数据结构 上三角矩阵相加相乘问题 设矩阵A B C均为采用压缩存储方式的n阶上三角矩阵,矩阵元素为整数类型,要求:

typedefintElemType;//定义矩阵元素类型ElemType为整型#include"stdlib.h"//该文件包含malloc()、realloc()和free()等函数#includ

设A为数域P上的n阶矩阵,数a为A的n重特征值,证明A=aE为数量矩阵

由已知,存在可逆矩阵Q满足Q^-1AQ=diag(a,a,...,a)=aE所以A=Q(aE)Q^-1=aQQ^-1=aE.

证明:对于任意复数矩阵有 【其中T为转置,为矩阵取共轭】rank为求矩阵的秩

百度上太多这类问题了.记A的共轭为A‘Ax=0与A'^TAx=0同解故命题成立.再问:是这么做不假,但是如何证明Ax=0与A'^TAx=0同解。可不可以写一下。再答:Ax=0则A'^TAx=0A'^T

设A,B均为n阶矩阵,r(A)

(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)

设矩阵A,B属于复数域上的n维矩阵,A,B可交换,即AB=BA,证明A的特征子空间一定是B的不变子空间

对A的属于特征值λ的特征子空间Vλ中的任一向量x有Ax=λx所以A(Bx)=BAx=λBx所以Bx属于Vλ所以A的特征子空间Vλ是B的不变子空间.

设A为实数域上的n阶对称矩阵,且满足A2=0,求证:A=0

两侧的括号省略设A=abbca,bc均为实数.A^2=AA=ababbc乘bc按定义:AA=a^2+b^2ab+bcab+bcb^2+c^2由已知:A^2=0,即各元素均为0.得:a^2+b^2=0,

设A是复数域C上一个n阶矩阵

设p1是A的属于特征值r1的特征向量将p1扩充为C^n的一组基p1,p2,...,pn则P=(p1,p2,...,pn)可逆且AP=(Ap1,Ap2,...,Apn)=(r1p1,Ap2,...,Ap

设2为矩阵A的一个特征值,则矩阵3A必有一个特征值?

2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值

设A,B均为n阶上三角形矩阵,试证AB亦为n阶上三角形矩阵

矩阵X=(xij)为n阶上三角形矩阵当且仅当当i>j时,矩阵的元素xij=0.设A=(aij),B=(bij)因为A,B均为n阶上三角形矩阵,故当i>j时,aij=0,bij=0令C=AB=(cij)

设A是一个n阶上三角矩阵,并且主对角线上的元素不为0,如何证明它的逆矩阵也是上三角形矩阵?

证:用伴随矩阵的方法由A可逆,A^-1=A*/|A|记A=(aij),A*=(Aij)^T其中Aij=(-1)^Mij是aij的代数余子式,Mij是aij是余子式.当ii.2.某行乘非零常数在这两类变

设A 是数域F上的n阶方阵,并且有n个特征值.证明,存在数域F上的可逆矩阵P使得P^-1AP为上三角矩阵.

我证的是T^-1AT,你再调整一下字母吧~证明:设λ1,...,λs为A的所有不同的实特征根,且可知A与某一Jordan标准型矩阵J相似,即存在可逆实矩阵P使得P^(-1)AP=J,其中,J1λi1J

复数域矩阵的问题复数域

因为任何一个矩阵都可以在复数域上化为约旦标准型,所以均可分解成两个n阶矩阵B、C的和,其中B是可对角化的矩阵,C是幂零矩阵.