设 相互独立同服从参数 的泊松分布,令 ,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:47:05
设 相互独立同服从参数 的泊松分布,令 ,则
设两个随机变量X和Y相互独立且分别服从参数为a1,a2的泊松分布,则X+Y服从参数为什么的泊松分布?

X+Y服从参数为(a1+a2)的泊松分布,因为泊松分布具有可加性,证明见参考资料

设X、Y是相互独立的随机变量,分别服从参数为λ1、λ2的泊松分布,怎样证明Z=X+Y服从λ1+λ2的泊松分布?

X~π(a)Y~π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k

19.设随机变量X~B,Y服从参数为3的泊松分布,且X与Y相互独立,则 D(X+Y)=______.

X服从B(n,p)二项分布D(X)=np(1-p)Y服从参数为3的泊松分布D(Y)=3X与Y相互独立D(X+Y)=D(X)+D(Y)D(X+Y)=np(1-p)+3解毕

求解一道概率题设随机变量X服从参数为3的泊松分布,B(8,),且X,Y相互独立,则D(X-3Y-4)=(   )

设随机变量X服从参数为3的泊松分布,Y~B(8,1/3),且X,Y相互独立,则D(X-3Y-4)=()伯松分布的参数就是期望和方差.D(x)=3D(y)=np(1-p)=8*1/3*2/3=16/9,

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

概率论 泊松分布设X、Y是相互独立的随机变量,分别服从参数为λ1、λ2的泊松分布,怎样证明Z=X+Y服从λ1+λ2的泊松

若是没有记错的话,虽然卷积公式在连续型随机变量中提出来,但是有说过对于离散型随机变量也可使用,把那个积分改成求和就行了再问:能具体为我证明此题吗?谢谢再答:不知道公式怎么打,只能简要说一说:因为X、Y

有关概率论的问题设随机变量X服从参数为3的泊松分布,B(8,1/3 ),且X,Y相互独立,则D(X-3Y-4)=( )

伯松分布的参数就是期望和方差.D(x)=3D(y)=np(1-p)=8*1/3*2/3=8/9,E(y)=8/3D(X-3Y-4)=E(X^2)-E^2(X)+E(9Y^2)-E^2(3Y)=D(x)

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设随机变量X1,X2,X3相互独立,其中X1~b(5,0.2),X2~,X)4,0(N3服从参数为3的泊松分布.

随机变量X1,X2,X3相互独立故D(Y)=D(X1-2X2+3X3)=D(X1)+D(2X2)+D(3X3)=D(X1)+4D(X2)+9D(X3)X1~b(5,0.2),二项分布所以D(X1)=5

设随机变量X与Y相互独立,且X~B(16,1/2),Y服从于参数为9的泊松分布,则D(X-2Y+1)=________.

EX=16*(1/2)=8,DX=16*(1/2)*(1-1/2)=4EY=9,DY=9D(X-2Y+1)=D(X-2Y)=DX+D2Y=DX+4DY=4+4*9=40

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

设随机变量X与Y相互独立,且X~B(16,0.5),Y服从参数为9的泊松分布,则D(X-2Y+3)=?

随机变量X与Y相互独立,那么D(X-2Y+3)=DX+2²*DY而X~B(16,0.5),Y服从参数为9的泊松分布所以DX=16*0.5*(1-0.5)=4,而Y的方差就等于泊松分数的参数,

概率论问题,设X.Y相互独立.且都服从参数为1的柏松分布,求X+Y服从哪种分布?

X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答

设X1,X2……Xn是相互独立的随机变量序列且他们服从参数λ的泊松分布,则由中心极限定理知

用定义做就行lim(n->∞)P{[∑(1,n)Xi-n*E(Xi)]/[√n*√D(Xi)]≤x}=Φ(x)因为Xi~P(λ),所以E(Xi)=D(Xi)=λ,代到上式lim(n->∞)P{[∑(1

随机变量X,Y相互独立,分别服从参数为a,b的泊松分布,证明X+Y服从参数为a+b的泊松分布.

π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m