设(X,Y)在曲线Y=X^2与Y=X所围成的区域D中服从均匀分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:05:22
手机没法输入公式,方法如下.对斜率求x的不定积分,代入(1,1)求得待定常数.得解再问:对斜率怎么求不定积分呢再答:斜率的表达式y=f(x)即y'=4x^2-y'/x',得y‘=4x^2/(1+1/x
lim(n->∝)√n*√f(2/n)=lim(n->∝)√2*√[f(2/n)/(2/n)]=√2lim(n->∝)√f(2/n)/(2/n)n->∝,2/n->0,u=2/n=√2lim(u->0
1)f'(x)=x^2+2bx+cf'(2-x)=f'(x),即f'(x)关于x=1对称,因此有:b=-1与x轴交点处的切线为y=4x-12,设交点为a,则f(a)=0,f'(a)=4过a的切线为:y
二次线性常系数微分方程,还知道过某点和某点的斜率,不是很简单的么--再问:求通解就能求出来对吧?再答:不用像求一般通解那么麻烦,常系数的微分方程的解就那么几个,指数的,三角的,特解也好求,指数三角另外
由于曲线f(x)与y=sinx在原点相切,则f(0)=0,f'(0)=y'(0)=cos0=1剩下部分看图片
由题目可知,g'(1)=2对f(x)求导:f'(1)=g'(1)+2=4得直线斜率为4g(1)=3f(1)=g(1)+1=4所以直线过点(1,4)所以直线方程y=4x
由题得g'(1)=2g(x)的切线方程为y=2x+1=2(x-1)+3所以g(1)=3f'(1)=g'(1)+2x=2+2=4f(1)=g(1)+9=12所以f(x)在(1,f(1))处的切线方程为y
f'(x)=2g'(x)+1=2x+1所以g'(x)=x即g(x)=x²,所以f(x)=(2x-1)²+x=4x²-3x+1f'(x)=8x-3f'(1)=5f(1)=2
与直线x+2y+1=0垂直,则切线的斜率k=2故y'=a*e^(ax)y'(0)=a*1=2故a=2
y=e^(ax)求导:y′=a*e^(ax)在(0,1)处的值为:a直线x+2y+1=0斜率为-1/2依题意得:-a/2=-1故a=-2
直线x+2y+1=0可变为y=(-1/2)x-1/2,斜率为-1/2.y=e^(ax)在点(0,1)处的切线斜率为2,即y'=ae^(ax),y'(0)=a=2.
y'=me^mxy'(0)=m=-1/(-1/2)=2m=2
曲线y=f(x)在点(1,f(1))处切线的斜率为4答案为b.4因为曲线y=g(x)在点(1,g(1))处切线方程为y=2x+1说明g'(1)=2所以y=f(x)=g(x)+x^2,在点(1,f(1)
解由切线与直线4y+x+1=0垂直知直线4y+x+1=0的斜率为-1/4,则切线的斜率为k=4设M(x0,y0)则y=x^2+x+2在点M处的导数为切线的斜率由y=x^2+x+2求导y′=(x^2+x
关于y=x对称则为f(x)的反函数x=2-3(y+2)所以y=2-3(x+2)
y'=2x+3切线与直线垂直,直线斜率=2/6=1/3所以切线斜率k=-3即2x+3=-3,得x=-3y=9-9-5=-5所以由点斜式得切线方程为:y=-3(x+3)-5=-3x-14
令t=2/nlim根号2f(t)/t
y=e^(ax)求导得:y'=e^(ax)*a那么过(0,1)的切线斜率是k=y'|(x=0)=e^0*a=a切线与直线x+2y+1=0垂直,则有:a*(-1/2)=-1所以,a=2
y*=b0xe^x,y*'=b0(e^x加xe^x),y*''=b0(2e^x加xe^x)代入解得:b0=-2
这个题目详细不起来的,很简单的曲线在(0,1)处的切线的斜率为曲线的一阶导数故而有y'=ax^ax,取x=0,得到y'=a故而a×-0.5=-1,故而a=2