设(X,Y)在曲线Y=X^2与Y=X所围成的区域D中服从均匀分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:05:22
设(X,Y)在曲线Y=X^2与Y=X所围成的区域D中服从均匀分布
设曲线y=y(x)在其点(x,y)处的切线斜率为4x^2-y/x,且曲线过点(1,1),求该曲线的方程.

手机没法输入公式,方法如下.对斜率求x的不定积分,代入(1,1)求得待定常数.得解再问:对斜率怎么求不定积分呢再答:斜率的表达式y=f(x)即y'=4x^2-y'/x',得y‘=4x^2/(1+1/x

设曲线y=f(x)在原点与曲线y=sinx相切,求lim(n趋无穷)根号n*根号(f(2/n))

lim(n->∝)√n*√f(2/n)=lim(n->∝)√2*√[f(2/n)/(2/n)]=√2lim(n->∝)√f(2/n)/(2/n)n->∝,2/n->0,u=2/n=√2lim(u->0

已知函数f(x)=1/3x^3+bx^2+cx+d设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f’(x)为f

1)f'(x)=x^2+2bx+cf'(2-x)=f'(x),即f'(x)关于x=1对称,因此有:b=-1与x轴交点处的切线为y=4x-12,设交点为a,则f(a)=0,f'(a)=4过a的切线为:y

设函数y=y(x)满足微分方程y''-3y'+2y=2e^x,其图形在点(0,1)处的切线方程与曲线y=x^2-x+1在

二次线性常系数微分方程,还知道过某点和某点的斜率,不是很简单的么--再问:求通解就能求出来对吧?再答:不用像求一般通解那么麻烦,常系数的微分方程的解就那么几个,指数的,三角的,特解也好求,指数三角另外

设曲线f(x)在原点与曲线y=sinx相切,试求极限lim(n^1/2*根号f(2/n)),n无穷大

由于曲线f(x)与y=sinx在原点相切,则f(0)=0,f'(0)=y'(0)=cos0=1剩下部分看图片

设函数f(x)=g(x)+x^2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点

由题目可知,g'(1)=2对f(x)求导:f'(1)=g'(1)+2=4得直线斜率为4g(1)=3f(1)=g(1)+1=4所以直线过点(1,4)所以直线方程y=4x

设函数f(x)=g(x)+x^2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点

由题得g'(1)=2g(x)的切线方程为y=2x+1=2(x-1)+3所以g(1)=3f'(1)=g'(1)+2x=2+2=4f(1)=g(1)+9=12所以f(x)在(1,f(1))处的切线方程为y

设函数F(X)=G(2X-1)+X方曲线Y=G(X)在点(1,G(1))处的切线方程为Y=2X+1则曲线Y=F(X)在点

f'(x)=2g'(x)+1=2x+1所以g'(x)=x即g(x)=x²,所以f(x)=(2x-1)²+x=4x²-3x+1f'(x)=8x-3f'(1)=5f(1)=2

设曲线y=e^ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=

与直线x+2y+1=0垂直,则切线的斜率k=2故y'=a*e^(ax)y'(0)=a*1=2故a=2

设曲线y=e^ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=__.

y=e^(ax)求导:y′=a*e^(ax)在(0,1)处的值为:a直线x+2y+1=0斜率为-1/2依题意得:-a/2=-1故a=-2

设曲线y=e^(ax)在点(0,1)处的切线与直线x+2y+1=0垂直,则a

直线x+2y+1=0可变为y=(-1/2)x-1/2,斜率为-1/2.y=e^(ax)在点(0,1)处的切线斜率为2,即y'=ae^(ax),y'(0)=a=2.

设函数f(x)=g(x)+x^2,曲线y=g(x)在点(1,g(1))处切线方程为y=2x+1,则曲线y=f(x)在点(

曲线y=f(x)在点(1,f(1))处切线的斜率为4答案为b.4因为曲线y=g(x)在点(1,g(1))处切线方程为y=2x+1说明g'(1)=2所以y=f(x)=g(x)+x^2,在点(1,f(1)

设曲线y=x^2+x+2在点M处的切线与直线4y+x+1=0垂直,则曲线在M处的切线方程为 A16x-4y-1=0 B1

解由切线与直线4y+x+1=0垂直知直线4y+x+1=0的斜率为-1/4,则切线的斜率为k=4设M(x0,y0)则y=x^2+x+2在点M处的导数为切线的斜率由y=x^2+x+2求导y′=(x^2+x

设曲线y=x^2+3x-5在点M处的切线与直线2x-6y+1=0垂直,求该曲线在M的切线方程,

y'=2x+3切线与直线垂直,直线斜率=2/6=1/3所以切线斜率k=-3即2x+3=-3,得x=-3y=9-9-5=-5所以由点斜式得切线方程为:y=-3(x+3)-5=-3x-14

设曲线y=e的ax次方在点(0,1)处的切线与直线x+2y+1=0垂直,则a为多少?

y=e^(ax)求导得:y'=e^(ax)*a那么过(0,1)的切线斜率是k=y'|(x=0)=e^0*a=a切线与直线x+2y+1=0垂直,则有:a*(-1/2)=-1所以,a=2

设曲线y=e^ax在点(0,1)初的切线与直线x+2y+1=0垂直,则a=?

这个题目详细不起来的,很简单的曲线在(0,1)处的切线的斜率为曲线的一阶导数故而有y'=ax^ax,取x=0,得到y'=a故而a×-0.5=-1,故而a=2