设(X,Y)服从A上的均匀分布,其中A为x轴,y轴机x 2y=1所

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:14:13
设(X,Y)服从A上的均匀分布,其中A为x轴,y轴机x 2y=1所
概率论与数理统计的题:设X,Y是相互独立且(0,a)上服从均匀分布的随机变量,则E【min(x,y)】=?

这个只是一种简便写法.其实可以看到,如果x>y,那么(1/2)(x+y-|x-y|)=(1/2)[x+y-(x-y)]=y如果x

设随机变量X,Y相互独立,且服从[0,1]上的均匀分布,求X+Y的概率密度.

不太清楚你的意思,是不知道积分区域怎么出来的?还是不知道怎么积分?其实就是左右两块区域求积分和,见下图再问:不好意思没说清楚,是不知道怎么积分的再答:就是图中黑色区域,左边矩形和右边梯形的积分和。事实

设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c不等于零),试求随机变量Y的密度函数

不对的地方多多指教再问:第一步不太明白诶!再答:f(x)么?这是均匀分布的公式啊

设随机变量X与Y独立,并且都服从区间[0,a]上的均匀分布,求随机变量Z=X/Y的概率密度.

这种涉及均匀分布的问题画图来解决是比较方便的首先,(x,y)服从二维均匀分布,密度函数是面积的倒数,即1/a^2P{Z

设随机变量X,Y相互独立,且都服从[-1,1]上均匀分布,求X,Y的概率密度

你.有我当年风范f(x)={1/2-1再问:0,其他是什么意思啊直接在下面一行写就行了啊?再答:大括号把两行扩起来,就像我写的那样,扩两行,我这只扩了一行再问:能不能有点过程,我在考试啊,不能直接这样

设随机变量X,Y都服从区间【0,1】上的均匀分布,则E(X=Y)=?

随机变量X,Y(不独立也行),则E(X+Y)=E(X)+E(Y)随机变量X,区间【a,b】上的均匀分布,则E(X)=(a+b)/2E(X+Y)=E(X)+E(Y)=1/2+1/2=1

设随机变量x服从(0,1)上的均匀分布,Y=e^x 求y的数学期望 和 方差

楼上方差错了方差(x*(e^x-1)^2在(0,1)上的积分)

设随机变量X,Y都服从区间[0,1]上的均匀分布,则E(X+Y)=

由于XY独立,那么E(X+Y)=EX+EY均匀分布其概率函数就是f(x)=1/(1-0)=1(0

设(X,Y)服从下列区域D上的均匀分布,其中D:x>=y,0

可以计算出D的面积为1/2所以(X,Y)的密度函数为f(x,y)=2(x,y)∈D而P(X+Y=y.0

概率论均匀分布.设随机变量X,Y互相独立,且都服从[1,3]上的均匀分布,记事件A={Xa},已知P{AUB}=7/9,

A和B是独立的,所以A发生与否和B没有直接关系,P{AUB}表示{Xa}发生的概率.只有当B事件改为B={X>a}时,AUB才为整体,P{AUB}=1.

设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(X,Y)|0

有两种方法:第一可用卷积公式直接写答案,第二可以用一般的求法,就是把X+Y=Z当成一函数图象.然后利用积分区间讨论Z的范围,进而得到其概率密度函数,概率论与统计书上有的

设随机变量X,Y,Z都服从区间[0,1]上的均匀分布,E[(X-2Y+Z)^2]

没有给出是否相互独立吗再问:没有给,不过应该是的吧,(是英文版的书,貌似没说独立这个词~)再答:若不独立,应该给出联合分布,若独立,就分解开求就行了饿:=E[x^2+4Y^2+Z^2-4XY+2XZ-

设随机变量X服从区间为[1,3]上的均匀分布,且Y=2X+1,求D(Y).

由方差的性质:D(Y)=D(2X+1)=4DX,而均匀分布的方差:DX=(3-1)^2/12=4/12=1/3故:D(Y)=4/3这个题是方差的性质与均匀分布的方差的应用,要熟练掌握.

概率论:设(X,Y)服从下列区域D上的均匀分布,求p{X+Y

既然是均匀分布,用D1的面积占D的面积的比例更简单,一看就知道答案是1/2再问:请教,这个积分解的过程是什么,我解出来总是带x,答案是含有y的一个值再答:常数的积分是这个常数值乘以区间长度,也就是4*

设随机变量x服从【0,1】上均匀分布,求Y=e^x的概率密度!

FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0