设(X,Y)服从区域G=上的均匀分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:44:21
设(X,Y)服从区域G=上的均匀分布
设二维随机变量(X,Y)在区域G={(x,y)|0≦x≦1,x²≦y≦x}上服从均匀分布,求

由于∫(x^2,x)∫(0,1)f(x,y)dxdy=1,且f(x,y)是常数,算出f(x,y)=6,边缘密度f(x)=∫(x^2,x)6dy=6x^2-6x;边缘密度f(y)=∫(y^0.5,y)6

设G表示抛物线y=x2及直线y=x所包围的区域,X,Y服从G上的均匀分布,求联合概率密度

求围成图形的面积抛物线y=x2及直线y=x交点(0,0)(1,1)G=S(0,1)(x-x^2)dx=x^2/2|(0,1)-x^3/3|(0,1)=1/6f(x,y)=6(0

设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密

均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0

设G为由抛物线y=x*x和y=x所围成区域,(X,Y)在区域G上服从均匀分布,求:(1)X,Y 的联合概率密度及边缘概率

根据定积分算出G的面积,A=∫[0,1][x-x²]dx=1/61.所以可以知道X,Y的联合概率密度为p(x,y)=1/A=6(x,y)∈G0(x,y)∉G2.边缘概率密度只要利

设二维随机变量(X,Y)服从区域G={(x,y):1

我假设x和y是独立的啦是不是漏写了Fx(x)=x-1.Fy(y)=(y-1)/2P(zt)=1-P(min(x,y)>t)=1-P(x>tandy>t)=1-P(x>t)P(y>t),(根据独立性)=

设二维随机变量xy在由x轴,y轴及直线2x+y=2所围成的三角形区域d上服从均匀分布,求

两个截距分别带入x=0得到y轴截距2y=0x1所以定义域三角形面积为1f(x,y)=1在上述给定区域fX(x)=∫(0~2-2x)1dy=2-2x0

设(X,Y)服从区域G={(x,y)/0

先写出(X,Y)的联合概率密度p(x,y)=1/4(x,y)∈G0其他则P(X与Y至少有一个小于1)=1-P(X≥1,Y≥1)=1-∫∫[x>1,y>1]p(x,y)dxdy=1-∫∫[1≤x再问:那

设(X,Y)服从下列区域D上的均匀分布,其中D:x>=y,0

可以计算出D的面积为1/2所以(X,Y)的密度函数为f(x,y)=2(x,y)∈D而P(X+Y=y.0

设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(X,Y)|0

有两种方法:第一可用卷积公式直接写答案,第二可以用一般的求法,就是把X+Y=Z当成一函数图象.然后利用积分区间讨论Z的范围,进而得到其概率密度函数,概率论与统计书上有的

设二维随机变量(X,Y)在区域G上服从均匀分布,其中G是由曲线y=x^2和y=x所围成的,求联合概率密度

本题主要考察均匀分布和定积分的知识.先画图,标出区域G,积分求出区域G的面积.所以当0

设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概

设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函

概率论:设(X,Y)服从下列区域D上的均匀分布,求p{X+Y

既然是均匀分布,用D1的面积占D的面积的比例更简单,一看就知道答案是1/2再问:请教,这个积分解的过程是什么,我解出来总是带x,答案是含有y的一个值再答:常数的积分是这个常数值乘以区间长度,也就是4*

设随机变量(X,Y)在区域G上服从均匀分布,G为y轴,x轴与直线y=2x+1所围成的区域,求随机变量的分布函数

你好,求Y=2X+1与X轴的交点啊,令Y=0,解得X=-0.5.面积都不用积分,是个简单三角形,知道底和高,简单算下就知道了.

设随机变量(X,Y)服从区域D上的均匀分布,其中区域D是直线y=x,x=1和x轴所围成的三角形区域,则(X,Y)的概率密

求出面积0.5概率密度f(x,y)=2当(X,Y)∈D时,其他=0再问:面积是0.5,怎么得到的概率密度是2呢?再答:均匀分布,密度是面积的倒数

设二维随机向量(X,Y)服从区域G={(x,y)\0

图就不画了.在直角坐标系中,G表示的区域为x轴、y轴、x=1、y=1围成的正方形区域,面积=1P表示的区域为x轴、y轴、直线y=-x+1围成的三角形区域,面积=1/2P{x+y