设(x,y)的联合分布密度为f(x,y)=cx²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:56:19
直观的根据面积来算,x=y,x=2y,x=3y,都是直线,是无具体面积的而XY是在一个具体的区域内,故为0可以算一下XY的概率,来比记忆加以理解
1.f(X,Y)关于X的边缘概率密度fX(x)=f(x,y)对y积分,下限x,上限无穷,结果fX(x)=e^(-x)2.f(X,Y)关于Y的边缘概率密度fY(y)=f(x,y)对x积分,下限0,上限y
(1)∫∫(-∞,+∞)f(x,y)dxdy=k/3=1k=3(2)fX(x)=∫(-∞,+∞)f(x,y)dy=3x²,0
我遭得住你是不是把老师不知道题都弄上来了哦嘿嘿当年我们怎么没想到这么个办法呢
(1)Z=X+YF(z)=P(Z
答案见图再问:最后一步下限为什么是1/8?还有答案是1/21再答:我只求了第一问,你约分之后就是1/21.你看看条件分布密度,x的取值范围就是下限是1/8再问:能不能把第二问也做了啊~~~~~谢谢啦!
我想那个(x+y)应该在分子上的,如果在分母上可是巨麻烦的
"f(x,y)=1/Ax2y,x>=1,1/x再问:f(x,y)=1/(Ax方y),x>=1,(1/X)
C取不同x值的时候y的边缘分布不同,反之,取不同y值的时候x的边缘分布不同,所以它们不独立.但是对x积分或者对y积分求得的概率密度是相同的,所以它们同分布.
(1)F(X,Y)=f(0,1)f(01)cx^2ydydx=c/2f(0,1)x^2dx=c/6x^3(0,1)=c/6=1c=6(2)P{X
利用所有事件概率和一定等于1的原理来求.具体方法就是∫(-∞,+∞)∫(-∞,+∞)f(x,y)dydx=∫(0,1)dx∫(x,1)Ady=∫(0,1)(A-Ax)dx=1/2A=1所以A=2
这个是大学的知识啊,这里没积分符号,你可以看概率统计书,太难打了,第一问套公式第二问也是看fx(x)*fy(y)=fxy(xy)第三问就是图像法,在直线x+y=1里面的积分
若X与Y相互独立,则f(x,y)=fx(x)*fy(y)即联合概率密度等于x和y边缘密度的乘积显然在这里0≤X≤Y≤1,fx(x)=∫(0到1)f(x,y)dy=∫(0到1)8xydy=4x²
画图,知道积分区域是y=0,x=y和x+y=1围成的区域那么P(x+y
∫∫f(x,y)dxdy=∫kxdx(0-->1)∫dy(0--->x)=∫kx^2dx(0-->1)=k/3=1--->k=3X的边缘概率密度fX(x)=∫3xdy(0--&
F(-∞,y)=A*(B-π/2)(C+arctany/3)=0,B=π/2F(x,-∞)=A*(B+arctanx/2)(C-π/2)=0,C=π/2F(+∞,+∞)=A(B+π/2)(C+π/2)