设2阶方阵A.B满足AB=I,且A ,则B=( )
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:46:30
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
AB=0,即B的每一列均为AX=0的解,现在对AX=0求解——对A进行初等行变换得112,从而满足x1+x2+2x3=0的解均为所求解.000000得AX=0的全部解为u(1,-1,0)+v(2,0,
没有一般的充要条件.只是充分条件的话,貌似有一个是正交阵就可以?
证:AB=A+2BAB-A=2BA(B-E)=2B-2E+2EA(B-E)=2(B-E)+2E(A-2E)(B-E)=2E½(A-2E)·(B-E)=E所以B-E可逆,且其逆矩阵为½
AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA
根据A^2+AB+B^2=0可得A(A+B)=-B^2,进一步可得到A(A+B)(-B^2)^(-1)=I,相应地,(-B^2)^(-1)A(A+B)=I,从而可知A和A+B都可逆,并且有A^(-1)
由于AB=BA所以(A+B)^3=0可以展开成A(A^2+3AB+3B^2)=-B^3两边取行列式得|A||A^2+3AB+3B^2|=(-a)^n|B|^3由B可逆知右边不是0.所以|A|一定不能为
A^2-A-2i=A^2-A*I-2I=(A-I)*(A)-2I=0所以(A-I)*(A/2)=I所以A-I的逆为A/2
1这个A不一定是可逆的.如果不可逆,A^(-1)不存在2跟第一个一样的错误
证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵
1、A+B+AB=0,A+B+AB+E=E,(E+A)(E+B)=E,所以E+A与E+B可逆且互为逆矩阵.所以(E+B)(E+A)=E,E+A+B+BA=E,A+B+BA=0.将A+B+AB=0与A+
AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0
由题得︱A︱︱B︱=︱E︱=1,∵︱A︱=-5,∴︱B︱=-1/5
DA^2=B^2,则|A^2|=|B^2||AA|=|BB||A||A|=|B||B||A|^2=|B|^2
(A-E)A=A^2-A=3E,因此(A-E)A/3=E,A-E可逆,其逆为A/3.
AB-A-B=OAB-A-B+E=E(A-E)(B-E)=E所以A-E可逆,逆为B-E再问:为什么(A-E)(B-E)=E?这个步骤能说清楚点吗?再答:AB-A-B+E=A(B-E)-(B-E)=(A
A^(-1)B-2B=A^(-1)(A^(-1)-2E)B=A^(-1)其中E是单位矩阵.因为A是对角阵,所以:A^(-1)=300040006A^(-1)-2E=100020004等式左侧的A^(-
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们