设3阶方阵A的特征值是 1 0 -1,对应的特征向量分别是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:25:23
显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值
因为A的特征值为2,-1,0所以B的特征值为g(2),g(-1),g(0),其中g(x)=2x^3-5x^2+3即B的特征值为-1,-4,3所以|B|=-1*(-4)*3=12.
如果A的特征值为x0,则A*的特征值为|A|/x0.另外,注意一下方阵的行列式的值为所有特征值的乘积.如果没算错应该=9
A*=A的行列式乘以A的逆=(-1乘以2乘以-3)乘以A的逆=6倍的A逆3阶方阵A的特征值为-12-3,A逆的特征值为-1,1/2,-1/3,所以A*的特征值为-6,3,-2
A的特征向量都是B的特征向量A*a1=a1则B*a1=A^2*a1-A*a1=(1-1)a1=0A*a2=2a2B*a2=A^2*a2-A*a2=(2^2-2)a2=2a2A*a3=3a3B*a3=A
A^-1的特征值是A的特征值的倒数:1/3,1/2,1/4再问:这是真的吗==这么简单
A的特征值是1,0,2则A+2E的特征值是(λ+2):3,2,4所以|A+2E|=3*2*4=24再问:谢了
λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变
设A的特征值是a,则a^2-3a+2是A^2-3A+2E的特征值.由已知A^2-3A+2E=0,而零矩阵的特征值只能是零,所以a^2-3a+2=0,即(a-1)(a-2)=0.所以a=1或a=2.即A
相似的方阵有相同的特征值dia(1,t,3)的特征值是1,t,32也是它的特征值,所以t=2
A的特征值是1,2,3则A^2的特征值是1^22^23^2即1494A的特征值是4*14*24*3即4812A^2-4A的特征值是1-44-89-12即-3-4-3则|A^2-4A|=(-3)*(-4
(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值
题:四阶方阵,伴随矩阵A*的特征值是1,2,4,8.求(1/3A)^-1的特征值对于四阶方阵,伴随矩阵A*=|A|A^(-1),记将其特征值用符号k标记,对应于特征向量d.易见|A*|=1·2·4·8
由于方阵A与B相似,因此A与B的特征值相同所以,B的特征值是1,12,13,而B是三阶的,因此上面三个特征值是B的全体特征值所以,B-1+E的特征值为11+1=2、112+1=3、113+1=4故:|
知识点:若a是A的特征值,g(x)是x的多项式,则g(a)是g(A)的特征值你的题目:g(x)=x^2,g(2)=2^2=4,g(A)=A^2所以4是A^2的特征值注意此类题型的扩展.
因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性
/>设f(x)=2x²+3则f(1)=5,f(2)=11,f(3)=21.因为A的特征值是1,2,3所以A²+3E的特征值为5,11,21所以|A²+3E|=5×11×2
是的方阵特征值为xA+aE的特征值是x+a
行列式的值等于特征值乘积0
设x是r对应的非零特征向量,则有Ax=rx,上式两边同左乘A,则AAx=rAx=rrx,由此可以得到r^2是A^2的特征值