设6,3,3为实对称矩阵A的特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:09:28
必须单位化!因为正交矩阵P是由A的特征向量构成的而矩阵P是正交矩阵的充分必要条件是它的列(行)向量组是标准正交向量组,即两两正交且长度为1.所以必须单位化.不对.单位化后得到的P才是正交矩阵.PS.用
A的特征值为2,0,0.
线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T
设λ是A的特征值则λ^2-λ是A^2-A的特征值而A^-A=0,零矩阵的特征值只能是0所以λ^2-λ=0所以λ=0或1即A的特征值只能是0,1又由已知A是实对称矩阵,故A可对角化,对角线元素由0,1组
做特征值分解就好了.求A的特征值,即det(A-λI)=0,可得λ=5,2,-1所以,A-5I=-4-20-2-3-20-2-2所以,特征向量为c(1,-2,2),取长度为1的,得(1/3,-2/3,
给提供个解题思路吧:实对称矩阵不同特征值的特征向量相正交显然ab都是1的特征向量求-1的特征向量只要和ab都正交满足即可!把特征向量施密特正交可以得到矩阵PP的转置AP=【1,1,-1】那么A=P【1
A2=A是什么?打错了吧,麻烦修改一下.如果是A^2=A即A^2-A=0写成特征值方程λ^2-λ=0所以A可能的特征值是,0和1因为A的秩是2,所以是1,1,0方法总结一下就是------------
设属于特征值1的特征向量为(x1,x2,x3)^T由于实对称矩阵属于不同特征值的特征向量正交故(x1,x2,x3)^T与a1=(0,1,1)^T正交.即有x2+x3=0.得基础解系:a2=(1,0,0
因为A^2+5A=0所以A(A+5E)=0所以A的特征值只能是0或-5.而A是秩为2的3阶实对称矩阵所以A的特征值为0,-5,-5.再问:为啥A(A+5E)=0所以A的特征值只能是0或-5.再答:若a
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
你注意,解有两个向量作为基,那么他的解在一个平面上.这意味着有两个自由变量n-r=2,换句话说,它的秩r=1.3*3的矩阵,r=1,这说明有两个线性相关的行.必然,行列式为0.而det(A)=特征值之
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
因为是实对称矩阵,故2重特征值所对应的线性无关的特征向量的个数是2个
如果λ是A的特征值,x是其特征向量,即Ax=λx左乘x^H(x的共轭转置)得到λ=(x^HAx)/(x^Hx),分子和分母都是实数
1.B^T=(A^5-4A^3+E)^T=...自己继续写下去看看,是不是等于B就行了2.如果x1,x2,...,xn正交,且非零c1x1+c2x2+...+cnxn=0用xk对两端做内积就得到ck=
由题意知道,1这个特征根的特征子空间是二维的,和(0,1,1)正交的那个二维空间就是1的特征子空间.这个特征子空间由两个基张成的.先确定a2.a2必须和a1正交,所以答案里取了(1,0,0)(只要满足
参考答案:1)实对称阵对应不同特征值的特征向量正交.不妨设A的属于特征值1的特征向量(a,b,c)则(0,1,1)(a,b,c)=b+c=0.得两个特征向量(1,1,-1),(1,-1,1).故A的属