设a b c为正数,求证:根号a2 b2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:24:32
因为a1、a2、a3.都是正数,所以由均值定理得(a1a2)/a3+(a1a3)/a2>=2*√[a1*a2*a1*a3/(a3*a2)]=2a1,同理(a2a3)/a1+(a2a1)/a3>=2a2
结果是an=4(2n+1);首先由s1,s2,s3的关系可列出两个方程,关于a1,a2,a3.和已知的2a2=a1+a3联立,求出a1=4.接下来,利用根号sn是等差数列,推导出s(n)和a1的关系,
再问:那个图能发一下吗?再问:就是画出来的那个再答:发完了再问:……没有画出来的那个图吗?再问:就是那个矩形再答:=-=,我都改完了,你没看着?再问:哦!看到了,谢谢你!
特值法1248所以P=2+4=6Q=根号(1*8)显然P>q(如果你想我推导也可以,这里介绍最简单的方法给你)
2(a²+b²)>=a²+b²+2*a*b=(a+b)²a²+b²>=(a+b)²/2√(a²+b²
根据余弦定理算出其中一个角的大小,然后再根据三角形面积等于1/2乘以两边及夹角的正弦值,即S=AB*AC*sinBAC/2
an/(a1+a2+.+an)²<an/(a1+a2+...a(n-1))(a1+a2+...+an)=[(a1+a2+..+an)-(a1+a2+...a(n-1)]/(a1+a2+...
先证a^3+b^3≥a^2b+b^2a,由排序不等式,这是显然的,即1/(a^3+b^3+abc)≤1/(a^2b+b^2a+abc)=1/ab(a+b+c)同理,1/(b^3+c^3+abc)≤1/
(a1*a2/a3+a2*a3/a1)/2>=a2(均值)(a2*a3/a1+a3*a1/a2)/2>=a3(a1*a2/a3+a3*a1/a2)/2>=a13式左右相加即可
1/a+1/b>=2倍根号(1/ab)根号c=根号(1/ab)所以1/a+1/b>=2倍根号c1/b+1/c>=2倍根号a1/c+1/a>=2倍根号b1/a+1/b+1/c>=根号a+根号b+根号c所
对于任意实数x>1,有ax+x/(x-1)>b等价于min{a(x-1)+1\(x-1)+a+1(x>1)}>b等价于2a^(1\2)+a+1>b(a,b>0)等价于1+a^(1\2)>b^(1\2)
用幂平均不等式:((a^2+b^2+c^2)/3)^(1/2)≥((1/a+1/b+1/c)/3)^(-1);整理一下:a^2+b^2+c^2≥3*((1/a+1/b+1/c)/3)^(-2)=27*
a^2+b^2≥1/2*(a+b)^2所以√(a^2+b^2)≥√2/2*(a+b)同理√(a^2+c^2)≥√2/2*(a+c)√(c^2+b^2)≥√2/2*(c+b)所以根号(a^2+b^2)+
(1)a+b>=2根号ab>0b+c>=2根号bc>0c+a>=2根号ca>0上三式相乘有(a+b)(b+c)(c+a)>=8abca=b=c时取等号因为abc是不全相等的正数所以(a+b)(b+c)
原式》=3*(abc)^1/3*3*(abc)^2/3=9*(abc)^(1/3+2/3)=9abc当且仅当a=b=c
√a²+b²≥√[(a+b)²/2]=(a+b)/√2√b²+c²≥√[(b+c)²/2]=(b+c)/√2√a²+c²
根据齐次性:不妨设abc=1,则左边=1/(a^3+b^3+1)+1/(b^3+c^3+1)+1/(a^3+c^3+1)而p=a^3,q=b^3,r=c^3==>pqr=1,而且原式等于价于证明:1/
证明:(1)证法一:若用均值不等式,则直接可得结论.如下:均值不等式中的一部分为:n/(1/a1+1/a2+...+1/an)≤a1+a2+...+an)/n此即调和平均数小于等于算术平均数.把a1+
...BF=PE=根号下(8-x&sup8;)再在直角三角形PFC中,得:DF=根号下(8-x&sup8;)又在正方形ABCD中,AB=BC∴AE+BE=BF+CF即x+根号下(8+x
证明,假设等差数列的公差为d.因为1/(根号a1+根号a2)=(根号a2-根号a1)/(a2-a1)=(根号a2-根号a1)/d同理可得1/(根号a2+根号a3)=(根号a3-根号a2)/d所以类似的