设a b c是正数 证明(a b c) 2>三次根下abc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:09:05
设a b c是正数 证明(a b c) 2>三次根下abc
设abc为三角形ABC的三边长,则(a平方+b平方+c平方)-4a平方b平方的值是正数还是负数

这个无法判定再问:改了下条件再答:(a平方+b平方+c平方)平方-4a平方b平方这是个平方差=(a^2+b^2+c^2-2ab)^2(a^2+b^2+c^2+2ab)^2=[(a-b)^2+c^2][

证明:设G为△ABC的重心,则GA^2+GB^2+GC^2最小

设△ABC三点坐标分别是(x1,y1)(x2,y2),(x3,y3),G(x,y)则GA^2+GB^2+GC^2=(x-x1)^2+(y-y1)^2+(x-x2)^2+(y-y2)^2+(x-x3)^

设abc均为正数,且a+b+c=1.证明:ab+bc+ac=1/3

要是你不采纳呢再问:你说呀,说了我看再问:学霸,快点吧😭再答:网不好发不过去再问:真的么😏再答:我在试试再问:好的再答: 再答:你以为我骗你呀再问:嘿嘿,谢啦

排序不等式.设a,b,c是正数,求证:a^ab^bc^c>等于(abc)^(a+b+c

a^(3a)*b^(3b)*c^(3c)/[(abc)^(a+b+c)]=a^(2a-b-c)*b^(2b-c-a)*c^(2c-a-b)=(a/b)^(a-b)*(b/c)^(b-c)*(c/a)^

设a,b,c是正数,求证:a^ab^bc^c>(abc)^(a+b+c)/3(求过程)

首先,题中的>号应改为≥号.证明:不妨设a≥b≥c.则左端除以右端的商是:a^[(2a-b-c)/3]*b^[(2b-a-c)/3]*c^[(2c-a-b)/3]=(a/b)^[(a-b)/3]*(a

若abc为正数,证明2(a3+b3+c3)大于等于a2(b+c)+b2(a+c)+c2( a+b)注是3是立方

2*(a^3+b^3+c^3)-(a^2*(b+c)+b^2*(a+c)+c^2*(a+b))=2*a^3+2b^3+2c^3-b*a^2-c*a^2-a*b^2-c*b^2-a*c^2-b*c^2=

已知:abc分别平分三角形ABC的三条边的长度,请证明:b的平方+c的平方-a的平方-2ac是正数、负数或零

在任意△ABC中  做AD⊥BC.  ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a  则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c  根据勾股定理可得:  A

abc是△ABC的三边 是证明a2-b2+c2-2ac

由余弦定理得:a^2+c^2-2accosB=b^2所以上式左侧=2accosB-2ac=2ac(cosB-1)因为-1

高中三角函数设△ABC为锐角三角形,证明

证:1)不等号左边sinA+sinB=2sin(A+B)/2*COS(A-B)/2=2sin(π-C)/2*cos(A-B)/2=2cosC/2*cos(A-B)/2不等式右边1+cosC=2cos^

设△ABC的外接圆半径为R,证明正弦定理=2R

步骤1.在锐角△ABC中,设BC=a,AC=b,AB=c.作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/s

设abc是不全想的的正数.求证(1)(a+b)(b+c)(c+a)〉8abc (2)a+b+c〉根号ab+根号bc+根号

(1)a+b>=2根号ab>0b+c>=2根号bc>0c+a>=2根号ca>0上三式相乘有(a+b)(b+c)(c+a)>=8abca=b=c时取等号因为abc是不全相等的正数所以(a+b)(b+c)

证明ABC是直角三角形

因为AD=DC所以∠A=∠ABD因为BD=CD所以∠C=∠DBC因为∠A+∠ABD+∠DBC+∠C=180°所以∠ABD+∠DBC=90°即∠ABC=90°所以ABC是直角三角形

设a,b,c是三角形ABC的三边,是证明:a^2+b^2=c^2是三角形的充要条件

必要性:直角△ABC得到a^2+b^2=c^2;充分性:直接用三角形的余弦公c^2=a^2+b^2-2bc*cos∠C且c^2=a^2+b^2;可以得到cos∠C=0;即∠C=90°

设a,b,c是三角形ABC的三边,试证明:a^2+b^2=c^2是三角形ABC为直角三角形的充要条件

余弦定理;c^2=a^2+b^2-2bc*cos∠C,又a^2+b^2=c^2;2bc*cos∠C=0,cos∠C=0,0<∠C<180度,∠C=90度,这是三角形ABC为直角三角形充分条件,勾股定理

设a,b,c为正数,M=a^5+b^5+c^5,N=bca^3+acb^3+abc^3,则M N的大小关系是,证明

1.证明3(a^5+b^5+c^5)>=(a^3+b^3+c^3)(a^2+b^2+c^2)3(a^5+b^5+c^5)-(a^3+b^3+c^3)(a^2+b^2+c^2)=3(a^5+b^5+c^

不等式证明设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+

根据齐次性:不妨设abc=1,则左边=1/(a^3+b^3+1)+1/(b^3+c^3+1)+1/(a^3+c^3+1)而p=a^3,q=b^3,r=c^3==>pqr=1,而且原式等于价于证明:1/

设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.

证明:不妨设a≥b≥c>0,∴a2≥b2≥c2,由排序原理:顺序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(

设abc均为正数,且a+b+c=1证明 ①a^2b^2+b^2c^2+c^2a^2≥abc

abc均为正数,且a+b+c=1a^2b^2+b^2c^2+c^2a^2-abc=a^2b^2+b^2c^2+c^2a^2-abc(a+b+c)=2[a^2b^2+b^2c^2+c^2a^2-abc(