设a b c是正数 证明(a b c) 2>三次根下abc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:09:05
这个无法判定再问:改了下条件再答:(a平方+b平方+c平方)平方-4a平方b平方这是个平方差=(a^2+b^2+c^2-2ab)^2(a^2+b^2+c^2+2ab)^2=[(a-b)^2+c^2][
设△ABC三点坐标分别是(x1,y1)(x2,y2),(x3,y3),G(x,y)则GA^2+GB^2+GC^2=(x-x1)^2+(y-y1)^2+(x-x2)^2+(y-y2)^2+(x-x3)^
要是你不采纳呢再问:你说呀,说了我看再问:学霸,快点吧😭再答:网不好发不过去再问:真的么😏再答:我在试试再问:好的再答: 再答:你以为我骗你呀再问:嘿嘿,谢啦
a^(3a)*b^(3b)*c^(3c)/[(abc)^(a+b+c)]=a^(2a-b-c)*b^(2b-c-a)*c^(2c-a-b)=(a/b)^(a-b)*(b/c)^(b-c)*(c/a)^
首先,题中的>号应改为≥号.证明:不妨设a≥b≥c.则左端除以右端的商是:a^[(2a-b-c)/3]*b^[(2b-a-c)/3]*c^[(2c-a-b)/3]=(a/b)^[(a-b)/3]*(a
2*(a^3+b^3+c^3)-(a^2*(b+c)+b^2*(a+c)+c^2*(a+b))=2*a^3+2b^3+2c^3-b*a^2-c*a^2-a*b^2-c*b^2-a*c^2-b*c^2=
在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: A
由余弦定理得:a^2+c^2-2accosB=b^2所以上式左侧=2accosB-2ac=2ac(cosB-1)因为-1
证:1)不等号左边sinA+sinB=2sin(A+B)/2*COS(A-B)/2=2sin(π-C)/2*cos(A-B)/2=2cosC/2*cos(A-B)/2不等式右边1+cosC=2cos^
步骤1.在锐角△ABC中,设BC=a,AC=b,AB=c.作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/s
(1)a+b>=2根号ab>0b+c>=2根号bc>0c+a>=2根号ca>0上三式相乘有(a+b)(b+c)(c+a)>=8abca=b=c时取等号因为abc是不全相等的正数所以(a+b)(b+c)
因为AD=DC所以∠A=∠ABD因为BD=CD所以∠C=∠DBC因为∠A+∠ABD+∠DBC+∠C=180°所以∠ABD+∠DBC=90°即∠ABC=90°所以ABC是直角三角形
必要性:直角△ABC得到a^2+b^2=c^2;充分性:直接用三角形的余弦公c^2=a^2+b^2-2bc*cos∠C且c^2=a^2+b^2;可以得到cos∠C=0;即∠C=90°
余弦定理;c^2=a^2+b^2-2bc*cos∠C,又a^2+b^2=c^2;2bc*cos∠C=0,cos∠C=0,0<∠C<180度,∠C=90度,这是三角形ABC为直角三角形充分条件,勾股定理
1.证明3(a^5+b^5+c^5)>=(a^3+b^3+c^3)(a^2+b^2+c^2)3(a^5+b^5+c^5)-(a^3+b^3+c^3)(a^2+b^2+c^2)=3(a^5+b^5+c^
根据齐次性:不妨设abc=1,则左边=1/(a^3+b^3+1)+1/(b^3+c^3+1)+1/(a^3+c^3+1)而p=a^3,q=b^3,r=c^3==>pqr=1,而且原式等于价于证明:1/
证明:不妨设a≥b≥c>0,∴a2≥b2≥c2,由排序原理:顺序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(
abc均为正数,且a+b+c=1a^2b^2+b^2c^2+c^2a^2-abc=a^2b^2+b^2c^2+c^2a^2-abc(a+b+c)=2[a^2b^2+b^2c^2+c^2a^2-abc(