设a b是两个不共线的非零向量,已知AB=2a kb
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:33:19
由已知,ke1+e2≠t(e1+ke2)则(k-t)e1+(1-tk)e2≠0.∵非零向量e1,e2不共线,∴k-t≠0,1-kt≠0.解得:k≠±1.
a*b=|a||b|cos60=1/2|a|^2|a-tb|=根号[a^2-2ta*b+t^2b^2]=根号(a^2-t*a^2+t^2*a^2)=根号[a^2[(t-1/2)^2+3/4]]故当t=
可以这样分析呀因为是共线向量所以必然平行平行又有同向和反向两种情况所以m必然为两个值设8e1me2=n(me12e2)展开右边左右两变向量e1e2前系数必须相等可得2n=m和mn=8解得m=正负4
a,tb,1/3(a+b)的始点相同,假设终点在同一直线上,设三个向量对于的终点分别是A,B,C,则向量BA=a-tb,向量CA=a-1/3(a+b)=2a/3-b/3,向量BA与CA平行,∴1/(2
以下皆为向量AE=AB+BE=3e1+(1+λ)e2AC=AB+BE+EC=e1+(2+λ)e2A,E,C三点共线3=(1+λ)/(2+λ)λ=-5/2(2)BC=(-5,2)(3)A(8,3)
1)因为A、B、C三点共线,因此存在实数x使OC=xOA+(1-x)OB,即1/3*(a+b)=xa+(1-x)tb,因此x=1/3,(1-x)t=1/3,解得x=1/3,t=1/2,即当t=1/2时
1错误.是向量数量积的常见考点.a·b和c·a均是没有方向的数值,因此题式即为两不共线向量之差为零向量,这是不可能的.由此可知向量的数量积不满足乘法结合律.2正确.考虑三角形三边的关系,两边之差小于第
(1)∵A、B、C三点共线,∴AB=λAC,∴-a+tb=λ(-23a+13b)=-23λa+13λb,∴−1=−23λt=13λ,解得t=12.(2)∵|a|=|b|=1,<a,b>=120°,∴a
(1)AB=tb-a,AC=1/3(b)-2/3(a)A、B、C三点共线AB=xACtb-a=1/3*x(b)-2/3*x(a)t=1/3*x2/3*x=1t=1/2(2)|a-xb|^2=a^2+x
因为|a|=|b|且a与b夹角为60°所以向量a·向量b=|a||a|/2又|a-tb||a-tb|=|a||a|(t×t-t+1)=|a||a|((t-1/2)(t-1/2)+3/4)故当t=1/2
k(a+kb)=ka+(k^2)b若向量ka+b和a+kb共线,则两向量成比例,那么ka+b=ka+(k^2)bk^2=1,k=1或者-1明白吗?
由A、B、C三点共线,可知存在实数λ,使OC=λOA+(1−λ)OB,即13(a+b)=λa+(1−λ)tb,即λ=13(1−λ)t = 13,则λ=13,实数t=12.
向量号省略(不好打)1.因为0A=2a-bOB=3a+bOC=a-3bAB=OB-OA=(3a+b)-(2a-b)=a+2bAC=OC-OA=(a-3b)-(2a-b)=-a-2bAB=-BA所以A,
BD=BC+CD=5a+5b而AB=a+b因此AB平行于BD所以A,B,D共线
(1)因为AB=e1+e2,BD=BC+CD=(2e1+8e2)+3(e1-e2)=5(e1+e2),所以BD=5AB,因此AB、BD共线,又AB、BD有公共点B,所以,三点A、B、D共线.(A、B、
向量BD=BC+CD=5a+5b=5AB所以,A、B、D三点共线设ka+b=x(a+kb)所以k=x,1=kx所以,k=1或-1
第一道题应该是求证ABD三点共线吧?(1)证明:BD=BC+CD=5e1+5e2由于AB=e1+e2,BD=5AB所以ABD三点共线(2)存在m=6假设m存在,有(me1+e2)·(e1-e2)=0展
1.OC=(1/3)OA+(1/3t)OB.ABC三点共线→(1/3)+(1/3t)=1→t=1/22.(a-xb)²=1+x²-2x(-1/2)=x²+x+1=(x+1
根据向量共线的条件,设有实数x,若要使上面的两向量共线,则满足ka+b=x(a+kb),根据两边系数相等,列出下面等式:k=x,kx=1,解得k=1或k=-1.再问:无法理解k=x,kx=1咋来的再答
(1)三个向量在一条直线上,它们之间的差的点乘等于0即(tb/2-a/2)*[1/6(a+b)-a/2]=0=>t=(ab-2a^2)/(b^2-2ab)(2)|a-tb|^2=(a-tb)*(a-t