设a,b,c是不全相等的任意整数,若x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:40:35
设a,b,c是不全相等的任意整数,若x
帮个忙a,b,c是不全相等的正数 证明:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b) 注:字母

先证明:a^3+b^3>=a^2b+ab^2因为:(a^3+b^3)-(a^2b+ab^2)=a^2*(a-b)-b^2*(a-b)=(a^2-b^2)(a-b)=(a+b)(a-b)^2>=0所以:

以知a,b,c是不全相等的正数,求证 2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)

先证明:a^3+b^3>=a^2b+ab^2因为:(a^3+b^3)-(a^2b+ab^2)=a^2*(a-b)-b^2*(a-b)=(a^2-b^2)(a-b)=(a+b)(a-b)^2>=0所以:

1.证明题.已知a.b.c是不全相等的正数,求证 2(a3+b3+c3)>a2(a+b)+b2(a+c)+c2(a+b)

这个采用分组作差:a^3+b^3-(a^2*b+a*b^2)=(a^2-b^2)(a-b)=(a-b)^2*(a+b)>0(三数不等,不取等)所以a^3+b^3>a^2*b+a*b^2①同理:b^3+

高二数学必修5均值不等式啊,abc是不全相等的实数,求证:a*a+b*b+c*c >ab+bc+ac

a^2+b^2>2abb^2+c^2>2bca^c+c^2>2ac以上三式相加2a^2+2b^2+2c^2>2ab+2bc+2ac所以a^2+b^2+c^2>ab+bc+ac

设a、b、c是不全相等的任意实数,若x=a^2-bc,y=b^2-ca,z=c^2-ab,求证:x,y,z中至少有一个大

x+y+z=a^2+b^2+c^2-2ab-2bc-2ca2(x+y+z)=2a^2+2b^2+2c^2-2ab-2bc-2ca2(x+y+z)=(a^2-2ab+b^2)+(b^2-2bc+c^2)

设a,b,c是不全相等的任意整数,若x=a2-bc,y=b2-ac,z=c2-ab.求证:x,y,z中至少有一个大于零.

证明:假设x,y,z都小于0,∵x=a2-bc,y=b2-ca,z=c2-ab,∴2(x+y+z)=2a2-2bc+2b2-2ca+2c2-2ab=(a2-2ab+b2)+(b2-2bc+c2)+(a

设a、b、c是不全相等的任意实数,若x=a^2-bc,y=b^2-ca,z=c^2-ab

证明:∵x+y+z=a²-bc+b²-ac+c²-ab=1/2[(a-b)²+(b-c)²+(c-a)²]又∵a、b、c是不全相等的任意实数

不等式 设ABCD为不全相等的正数 求证 B/A+C/B+D/C+A/D大于16

题目有问题吧..应该是求证大于4吧?b/a+c/b+d/c+a/d≥2(c/a)½+2(a/c)½≥2[2(c/a)½·2(a/c)½]½=4当且仅当

设a,b,c是不全相等的正数,求证

(1)a+b>=2根号ab>0b+c>=2根号bc>0c+a>=2根号ca>0上三式相乘有(a+b)(b+c)(c+a)>=8abca=b=c时取等号因为abc是不全相等的正数所以(a+b)(b+c)

设a.b.c是不全相等的任意实数,若x=a-bc,y=b-ac,z=c-ab,z则x、y、z为 A都小于0 B都不大于0

X+Y+Z=a+b+c-(ab+bc+ac)=(a-b)/2+(b-c)/2+(a-c)/2≥0,当且仅当a=b=c时,x+y+z=0那么一定有一个是大于0的,所以选D

设a、b、c∈R,且a、b、c不全相等,则不等式a3+b3+c3≥3abc成立的一个充要条件是______.

解析 a3+b3+c3-3abc=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-ac-bc)=12(a+b+c)

已知a,b,c是不全相等的正数 证明a方+b方+ c方>ab+bc+ca

a,b,c是不全相等的正数(a-b)^2>0(b-c)^2>0(a-c)^2>0(a-b)^2+(b-c)^2+(a-c)^2>02a^2+2b^2+2c^2-2ab-2bc-2ac>0a^2+b^2

已知a,b,c是不全相等的正数求证(a+b)(b+c)(c+a)>8abc

利用基本不等式,可得:(a+b)≥2√(ab)(b+c)≥2√(bc)(c+a)≥2√(ca)以上三式相乘,得:(a+b)(b+c)(c+a)≥2√(ab)×2√(bc)×2√(ca)=8abc等号当

已知a,b,c是不全相等的正数,求证(b+c-a)/a + (c+a-b)/b + (a+b-c)/c >3

左边=(b+c)/a-1+(c+a)/b-1+(a+b)/c-1=b/a+c/a+c/b+a/b+a/c+b/c-3=(b/a+a/b)+(c/a+a/c)+(c/b+b/c)-3b/a+a/b>=2

已知a,b,c是不全相等的正数,求证:lga+lgb+lgc

都是正数所以a+b>=2√abb+c>=2√bcc+a>=2√ca相乘(a+b)(b+c)(c+a)>=8√(a^2b^2c^2)即(a+b)(b+c)(c+a)>=8abc要取等号则上面三个式子的等

已知abc是三个不全相等的正数,求证:(b+c)/a+(a+c)/b+(a+b)/c

证明:(b+c)/a+(a+c)/b+(a+b)/c=b/a+c/a+a/b+c/b+a/c+b/c=(b/a+a/b)+(c/a+a/c)+(c/b+b/c)而当a>0,b>0,c>0时b/a+a/

已知a,b,c是不全相等的正数,求证(ab+a+b+1)(ab+ac+bc+c*c)大于16abc

(ab+a+b+1)(ab+ac+bc+c^2)=(a+1)(b+1)(a+c)(b+c)>=2√(a*1)*2sqrt(b*1)*2√(a*c)*2√(b*c)=16√(a*b*a*c*b*c)=1

设a,b,c是不全相等的正数,求证(a+b)(b+c)(c+a)>8abc.

证明:因为a,b,c均为正数,由均值不等式得a+b≥2ab、a+c≥2ac、b+c≥2bc,又a,b,c不全相等,所以(a+b)(b+c)(c+a)>8abc.