设A,B为n阶方阵,A不为0且AB=0,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:55:09
设A,B为n阶方阵,A不为0且AB=0,则
设n阶方阵A的行列式为a,且每一行元素之和为b(b不为0),则A的第n列元素的代数余子式子之和是多少?最好有图.

把第1到第n-1列均加到第n列,则第n列全为b,将b提出并按第n列展开,可得行列式=b(1A1n+1A2n…+1Ann)=a,所以A的第n列元素代数余子式之和为a/b举个三阶行列式的例子:A=1230

设A为n阶方阵,B为N×S矩阵,且r(B)=n.证明若AB=0则A=0

若AB=0,则说明B的列向量都是AX=0的解因为r(B)=n,所以AX=0至少有n个线性无关的解设解集为S,则r(S)=n-r(A)>=n即r(A)=0所以r(A)=0即A=0

设A,B为n阶方阵,且A为对称阵,试证明BTAB也是对称阵.

证明某阵A为对称阵,只需要有AT=A(BTAB)T=BTAT(BT)T=BTATB又A为对称阵AT=A代入得BTATB=BTAB所以BTAB为对称阵

设A为n阶方阵,且A的k次幂等于0矩阵,(k为正整数),则() (A)A=0 (B)A有一个不为0的特征值

A的k次幂等于0矩阵指某个正整数kA^k=0设A的特征值λ则:Ax=λx(x≠0为特征向量)A^(k)x=0=λ^(k)x=》λ=0

设A,B为n阶方阵,且AB=0,证明:R(A)+R(B)小于等于n

因为AB=0所以B的列向量都是AX=0的解.所以B的列向量组可以由AX=0的基础解系线性表示所以r(B)

设A为n阶方阵,且|A|不等于0,证明A^T A为正定矩阵

用正定定义与矩阵运算证明,如图.经济数学团队帮你解答.请及时评价.

设A,B为n阶方阵,且r(A)+r(B)

设r(A)=p则存在矩阵P1,Q1使得P1AQ1=C1(C1只有前p行,前p列不为0)则A=P1^-1C1Q1^-1设r(B)=q则存在矩阵P2,Q2使得P2BQ2=C2(C2只有后q行,后q列不为0

设A,B均为n阶方阵且AB=O,证明A、B中至少有一个不可逆.

因为A,B均为n阶方阵且AB=O所以R(A)+R(B)≤n①假设A、B都可逆,则R(A)=n,R(B)=n那么R(A)+R(B)=2n与①矛盾所以A、B中至少有一个不可逆.

设A,B均为n阶方阵,且AB=0,证明r(A)=n-1时,r(A*)=1

AA*=|A|Er(A)=n-1,说明|A|=0因此AA*=0于A*的列向量为齐次方程AX=0的解向量从而r(A*)=1总之r(A*)=1

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A,B为n阶方阵,且AB=A+B,试证AB=BA

由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

问一道线性代数题目设A,B均为n阶方阵,且r(A)

解 : 为了方便,这里只举由一个方程构成的方程组为例子: 方程组 x1+x2+x3=0 的基础解系为 (-1,1,0)^T,(-1,0,1)

设A,B均为n阶方阵,且B不等于零,若AB=0,则|A|=?

AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0

设A,B,C均为n阶方阵,且ABC=I,则( )

根据逆矩阵的性质AB=I则有BA=I.已知ABC=I所以A(BC)=I,所以(BC)A=I.故(D)正确再问:貌似我书上的单位矩阵都是E莫非这里的单位矩阵是I?再答:是单位矩阵一般有两种记法,E和I.

设AB均为n阶方阵,若AB=0,且B不等于零,则必有A为不可逆矩阵,为什么啊

又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB

设a,b均为n阶方阵,则必有

这是个定理或性质.它的证明比较繁琐,若学过Laplace展开还好一点.记住这个结论就行了,不必深究它的证明!