设A,B是两个3阶矩阵,且detA=-2,detB=-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:48:34
设A,B是两个3阶矩阵,且detA=-2,detB=-1
设A,B是两个n阶正交矩阵,且AB的行列式为-1.n为奇数 求A-B的行列式

题目应该是哪里抄错了,下面构造例子说明这一点.设2阶矩阵C(t)=[cos(t),sin(t);-sin(t),cos(t)],可知C(t)正交且|C(t)|=1.对n=3,考虑3阶分块矩阵A=[-1

设A,B都是n阶正交矩阵,且|AB|

证:因为正交矩阵的行列式是正负1再由|AB|

您好,向您求助:设A,B是上F两个n阶矩阵,且AB=BA,A是幂零矩阵,求det(A+B)=det(B)

AB=BA则A,B可以同时分别化为上三角矩阵A1,B1.A是幂零矩阵意味着所化的上三角矩阵A1的对角线上的元素都是零.于是det(A+B)=det(A1+B1)=其对角线元素的乘积=det(B1)=d

设A,B是两个3阶矩阵,|A-1|=2,|B-1|=3,求|A*B-1-A-1B* |

A-1是A的逆矩阵吧?由AA*=|A|E可得:|A*B-1-A-1B*|=||A|A-1B-1-|B|A-1B-1|=|A-1B-1(|A|-|B|)|=2*3*(1/2-1/3)=1

设A,B为两个n阶正定矩阵,证明:AB为正定矩阵的充要条件是AB=BA.

证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=

大学线性代数可逆矩阵设A,B均为n阶矩阵.证明:分块矩阵(A B)是可逆矩阵当且仅当A+B与A-B均为可逆矩阵B A

证明(AB)是可逆矩阵?没弄错么这样就不是方阵了何来可逆.再问:我下面写了第二行是BA啊再答:AB列变换A-BB行变换A-BBBAB-AA0A+B所以其行列式为|A-B||A+B|A+B与A-B均为可

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

设A,B是n阶矩阵,且A可逆,证明AB与BA相似.

证明:由A可逆,有A^-1(AB)A=BA所以AB与BA相似.

设A,B是n阶矩阵,且A,B可逆,则有()

DA应该是(-2)^n*|A|^-1B,除非AB可替换C应该是B^-1A^-1

设A,B均是n阶矩阵,且秩r(A)+r(B)

1.rank(A)=dimKer(A)+dimKer(B)-dimR^n>0.再任取Ker(A)∩Ker(B)中的非零元x即可.方法二:Ax=0且Bx=0当且仅当(A|B)x=0,其中(A|B)为A和

设A,B是两个n阶正交矩阵,且AB的行列式为-1.证明:A+B的行列式为0

以A'表示A的转置所以A'A=AA'=E,B'B=BB'=E有|A'(A+B)B'|=|(A'A+A'B)B'|=|(E+A'B)B'|=|B'+A'|=|A+B|同时|A'(A+B)B'|=|A'|

设A是阶矩阵,且满足A^3=6E,矩阵B=A^2-2A+4E求证B可逆,并且求出B^-1

因为A^3-6E=0所以A(A^2-2A+4E)+2A^2-4A-6E=0所以A(A^2-2A+4E)+2(A^2-2A+4E)-14E=0所以(A+2E)(A^2-2A+4E)=14E所以B=A^2

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵

首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定

设A,B均是n阶实对称矩阵,且A是正定矩阵,B是半正定矩阵,证明|A+B|>|B|

前两天看你问过,一个人答了,估计没看懂,我也没看懂,我就用比较浅显的知识给你证明吧,高深的我也不会.哈哈!

设A,B是n阶正交矩阵,且|A|/|B|=-1,证明|A+B|=0

因为A,B为正交矩阵,所以┃A┃┃A+B┃=┃A’┃┃A+B┃=┃E+A’B┃=┃B’B+A’B┃=┃B’+A’┃┃B┃=┃A+B┃B┃=-┃A┃┃A+B┃.所以┃A┃┃A+B┃=0.所以┃A+B┃=

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵