设A,B都是n阶矩阵,试证:如果AB=0,那么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:59:38
AB的行列式等于A的行列式与B的行列式之积,AB为可逆矩阵,故AB的行列式不等于零,于是A的行列式与B的行列式均不等于零,故A,B都是可逆矩阵.
证:因为正交矩阵的行列式是正负1再由|AB|
由正交矩阵的性质,不妨设det(A)=1,det(B)=-1.又det(A)*det(A+B)=det(A)*det(A[T]+B[T])=det(I+AB[T])①det(B)*det(A+B)=d
AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB
把A和B看成K^n上的线性变换dimImage(B)=r(B)dimKer(A)=n-r(A)条件告诉你Image(B)是Ker(A)的子空间,必定有r(B)
证:因为m>n则r(A)再答:选择A再答:请采纳哦,谢谢如有疑问,我继续作答
首先,由A正定,存在正定矩阵C使A=C².这个用可对角化证明:由A为实对称阵,存在正交阵T使T^(-1)AT为对角阵.又A正定,故T^(-1)AT的对角线上均为正数(特征值>0).故存在对角
设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
AB=0表示B的列都属于Ker(A),那么r(A)+r(B)
还可能等于-1.再答:可以收藏我哦
证明:[(E+AB)^-1A]^T^T表示转置,楼主懂得,证明矩阵对称的思路:就是证明转置矩阵是否等于矩阵本身)另外,题中:A+B都是n阶对称矩阵.不对吧,应该是A和B都是n阶对称矩阵[(E+AB)^
AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
只要借助转置和逆的穿透律以及正交矩阵的定义即可,证明如图
证明:(1)因为(A-E)(B-E)=AB-(A+B)+E=E,所以A-E,B-E都可逆.(2)由(1)知E=(A−E)(B−E) =(B−E)(A−E)
这个用双向证明.证明:由已知,A'=A,B'=B所以AB是对称矩阵(AB)'=ABB'A'=ABBA=ABA,B可交换.
AA^T=A^TA=E,A^(-1)=A^T|A|^2=1,|A|=1.-1A*=|A|A^(-1)=A^T或者-A^TA*=A^T时,A*(A*)^T=A^T(A^T)^T=A^TA=EA*=-A^
因为|ABC|=|A||B||C|所以|ABC|≠0的充分必要条件是|A|,|B|,|C|都不等于0故ABC可逆的充分必要条件是A,B,C都可逆.