设a,b都是n阶非0矩阵,且ab=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:02:20
设a,b都是n阶非0矩阵,且ab=0
设A,B都是N阶矩阵,且A可逆,证明AB与BA有相同的特征值

A^-1表示A的逆,^表示后面的是指数.由A^-1ABA=BA可知AB与BA相似,故AB与BA有相同的特征值.

设A,B都是n阶正交矩阵,且|AB|

证:因为正交矩阵的行列式是正负1再由|AB|

【急】设A为n阶矩阵,证明A的行列式=0,且存在非零n阶矩阵B时,AB=0

行列式等于零,Ax=0有非零解,所以存在B.(简单只需取一个解,加上n-1个零解,构成B)

设AB都是n阶矩阵,且|A|不等于0证明AB与BA相似

因为|A|≠0所以A可逆所以A^-1(AB)A=BA所以AB与BA相似.再问:还有设3阶矩阵A的特值为λ1=1λ2=0λ3=-1p1^T=(122)p2^T=(2-21)p3^T=(-2-12)球A还

设A,B都是N阶方阵,I为N阶单位矩阵,且B=B2,A=I+B,证明A可逆

因为B^2=B,所以B^2-B-2I=-2I,即(B+I)(B-2I)=-2I,也就是(B+I)(B-2I/-2)=I.所以A(B-2I/-2)=I,根据定义AB=BA=E,所以A可逆.也可以这么做的

设A、B都是n阶非零矩阵,且AB=0,则A和B的秩(  )

若:r(A)=n,则A-1存在,由AB=0,得B=0,矛盾,所以:r(A)<n,同理:r(B)<n,故选择:B.

设A、B都是n阶矩阵,且AB=O,证明R(A)+R(B)

设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2

设A,B都是N阶方阵,I为N阶单位矩阵,且B=B^2,A=I+B,证明A可逆

因为B^2=B,所以B^2-B-2I=-2I,即(B+I)(B-2I)=-2I,也就是(B+I)(B-2I/-2)=I.所以A(B-2I/-2)=I,根据定义AB=BA=E,所以A可逆.也可以这么做的

设A,B都是N阶矩阵,且AB=0,证明R(A)+R(B)〈=N

AB=0表示B的列都属于Ker(A),那么r(A)+r(B)

设A,B都是n阶矩阵,B不等于0向量,且B的每一列都是方程组AX=0的解,则detA=?

这样想,矩阵B的每一列都是AX=0的解,这就说明AX=0有很多个解,也就是说这个方程的系数矩阵A肯定是不可逆的,当然它的行列式等于0再问:怎么说的不可逆再答:方程AX=0有多个非零解,系数矩阵A肯定不

设A,B都是n阶矩阵,且(AB)^2=E,则必有 选3

还可能等于-1.再答:可以收藏我哦

设A,B都是m*n矩阵,且r(A)+r(B)

设n-r(A)=s,n-r(B)=t,则s+t>n,Ax=0有s组线性无关的解,设为a1,……,as而Bx=0有t组线性无关的解,设为b1,……,bt,由于s+t大于n,因此a1,……,as,b1,…

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

设A是m*n矩阵,B是n*s矩阵,满足AB=0,且A,B均为非零矩阵,那么r(A)+r(B)≤n,r(A)≥1,r(B)

n值为AB所共有那么只能把AB和n作比较如果是A行秩B列秩的话(既引入m又引入s)无法比较

设向量a=(a1,a2,……an)T,b=(b1,b2...bn)T 都是非零向量,且aT*b=0,记n阶矩阵A=a*b

A^2=AA=(a*bT)(a*bT)==a*(bT*a)*bT(1)(结合律)由于:aT*b=0,故:[aT*b]T=0,即:bT*a=0(2)(2)代入(1),得:A^2=AA=(a*bT)(a*

高等代数题:设A和B都是非零矩阵,且AB=0.则

选C.这是因为:记A的列矩阵是A1,.An;B的行矩阵是B1,.Bn.由于AB=0所以(A1,...An)B=0因为B是非0矩阵,所以矩阵B至少有一列的元素不全为零,所以(A1,...An)乘以这一列

设n阶矩阵A非奇异,n阶矩阵B满秩,则矩阵A*B的标准型是什么

A非奇异,B满秩都是说可逆,故AB可逆,标准形是E,即单位矩阵

分块矩阵 设A为n阶非奇异矩阵,a为n×1矩阵,b为常数

PQ=A+aa^Ta+ba-a^TA*A+|A|a^T-a^TA*a+|A|b=A+aa^Ta+ba-|A|a^T+|A|a^T-a^TA*a+|A|b=A+aa^T(b+1)a0-a^TA*a+|A

设A.B都是n级矩阵,且A+B=AB,求证:AB=BA

利用A-E与B-E的可逆性如图证明.经济数学团队帮你解答,请及时采纳.