设a,b都是n阶非0矩阵,且ab=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:02:20
A^-1表示A的逆,^表示后面的是指数.由A^-1ABA=BA可知AB与BA相似,故AB与BA有相同的特征值.
AB=0|AB|=0|A|*|B|=0|A|=0或|B|=0
证:因为正交矩阵的行列式是正负1再由|AB|
行列式等于零,Ax=0有非零解,所以存在B.(简单只需取一个解,加上n-1个零解,构成B)
因为|A|≠0所以A可逆所以A^-1(AB)A=BA所以AB与BA相似.再问:还有设3阶矩阵A的特值为λ1=1λ2=0λ3=-1p1^T=(122)p2^T=(2-21)p3^T=(-2-12)球A还
因为B^2=B,所以B^2-B-2I=-2I,即(B+I)(B-2I)=-2I,也就是(B+I)(B-2I/-2)=I.所以A(B-2I/-2)=I,根据定义AB=BA=E,所以A可逆.也可以这么做的
若:r(A)=n,则A-1存在,由AB=0,得B=0,矛盾,所以:r(A)<n,同理:r(B)<n,故选择:B.
设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2
因为B^2=B,所以B^2-B-2I=-2I,即(B+I)(B-2I)=-2I,也就是(B+I)(B-2I/-2)=I.所以A(B-2I/-2)=I,根据定义AB=BA=E,所以A可逆.也可以这么做的
AB=0表示B的列都属于Ker(A),那么r(A)+r(B)
这样想,矩阵B的每一列都是AX=0的解,这就说明AX=0有很多个解,也就是说这个方程的系数矩阵A肯定是不可逆的,当然它的行列式等于0再问:怎么说的不可逆再答:方程AX=0有多个非零解,系数矩阵A肯定不
还可能等于-1.再答:可以收藏我哦
设n-r(A)=s,n-r(B)=t,则s+t>n,Ax=0有s组线性无关的解,设为a1,……,as而Bx=0有t组线性无关的解,设为b1,……,bt,由于s+t大于n,因此a1,……,as,b1,…
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
n值为AB所共有那么只能把AB和n作比较如果是A行秩B列秩的话(既引入m又引入s)无法比较
A^2=AA=(a*bT)(a*bT)==a*(bT*a)*bT(1)(结合律)由于:aT*b=0,故:[aT*b]T=0,即:bT*a=0(2)(2)代入(1),得:A^2=AA=(a*bT)(a*
选C.这是因为:记A的列矩阵是A1,.An;B的行矩阵是B1,.Bn.由于AB=0所以(A1,...An)B=0因为B是非0矩阵,所以矩阵B至少有一列的元素不全为零,所以(A1,...An)乘以这一列
A非奇异,B满秩都是说可逆,故AB可逆,标准形是E,即单位矩阵
PQ=A+aa^Ta+ba-a^TA*A+|A|a^T-a^TA*a+|A|b=A+aa^Ta+ba-|A|a^T+|A|a^T-a^TA*a+|A|b=A+aa^T(b+1)a0-a^TA*a+|A
利用A-E与B-E的可逆性如图证明.经济数学团队帮你解答,请及时采纳.