设a1,a2,a3是3维欧式空间V的一组标准正交基,求V的一个正交变换使得
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:09:05
只须证明它们可以互相线性表示.令b1=a1+a2,b2=a2+a3,b3=a3+a1,则向量组{b1,b2,b3}可以用{a1,a2,a3}线性表示,因为b1+b2+b3=(a1+a2)+(a2+a3
答案见补充图片再问:怎么看补充图片啊再答:在上传中,百度抽风,要等一会
(a1+a2+a3,a1+2a2+4a3,a1+3a2+9a3)=(a1,a2,a3)P其中P=111123149即有B=AP所以|A|=|A||P|=|P|=(2-1)(3-1)(3-2)=2.注:
可以用反证法来做.假设a1,a2,a3线性相关则a3可以用a1和a2来表示不妨设:a3=ma1+na2则a2+a3=ma1+(n+1)a2a1+a3=(m+1)a1+na2然后尝试用(a1+a2)和(
an/(a1+a2+.+an)²<an/(a1+a2+...a(n-1))(a1+a2+...+an)=[(a1+a2+..+an)-(a1+a2+...a(n-1)]/(a1+a2+...
(a1*a2/a3+a2*a3/a1)/2>=a2(均值)(a2*a3/a1+a3*a1/a2)/2>=a3(a1*a2/a3+a3*a1/a2)/2>=a13式左右相加即可
A4函数【必须三个都有数据才给出值】=IF(AND(A1"",A2"",A3""),A1+A2+A3,"")【只要其中一个有数据就计算总和】=IF(OR(A1"",A2"",A3""),A1+A2+A
就用题目中提出的向量a1,a2..as线性相关的意思是,存在不全为0的k1,k2...ks使得k1*a1+k2*a2+...+ks*as=0其中k1,k2...ks为实数.意思就是你只要找到一组满足条
a1+2a2,2a2+3a3,a1+2a2+3a3线性无关.r[a1+2a2,2a2+3a3,a1+2a2+3a3]可以求出来,具体为第3列减第二列,然后以此类推,变为a1,a2,a3.
解:(1)因为==+2+=1-2*1+2=1所以γ是一个单位向量.(2)因为β与γ正交,所以=0.而==+=1+k=1+k(+)=1+k(2-1)=1+k所以k=-1.
设x=(x1,x2,x3,x4)',首先考虑对应的齐次方程Ax=0,显然r(A)=3,所以基础解系仅含一个解,而方程Ax=0即x1a1+x2a2+x3a3+x4a4=0显然有一个解是(1,0,-2,3
(a1,1/2a2,1/3a3)=(a1,a2,a3)P1P1=10001/20001/3(a1-a2,a2+a3,a3+a1)=(a1,a2,a3)P2P2=101-110011所以(a1-a2,a
==+2+=2+2*(-1)+2=2所以||t||=√2.
对B进行初等列变换,C2-C1,然后对换C1跟C2两列(此时要多加个负号),即:-(2a1,a2,a3),所以|B|=-2|A|=-6,我也是刚学这个的,不知有没错.
推导一下,对于B的行列式,第三列减去第二列,然后第二列减去第一列,得|a1+a2+a3,a2+3a3,a2+5a3|,然后第三列减去第二列,得|a1+a2+a3,a2+3a3,2a3|,然后第二列X2
1+b3=a1+a2+a3,b1+b2=a2+a3,b2+b3=a1+a3得到b1=a2+a3/2;b2=a3/2;b3=a1+a3/2;1.要证明b1,b2,b3是V的一组基,只要证明它们线性无关就
a1可由,a2,a3,a4线性表示,∴a1,a2,a3,a4线性相关,∴行列式|a1,a2,a3,a4|=0.再问:哪条概念??再答:若a1,a2,a3,a4线性无关,则行列式|a1,a2,a3,a4
|3a1+a22a2a3|=|3a12a2a3|+|a22a2a3|=|3a12a2a3|+0=3^3*2^3|a1a2a3|=216|a1a2a3|=216d