设a1,a2,a3是齐次线性方程组ax=0的基础解系,下列向量组

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:16:50
设a1,a2,a3是齐次线性方程组ax=0的基础解系,下列向量组
设向量组a1a2a3线性无关,怎么证明a1-a2,a2=a3,a3-a1线性相关

存在一组不全为0的数1,1,1使得1(a1-a2)+1(a2-a3)+1(a3-a1)=0

设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明a1能由a2,a3线性表示

说明向量组a1,a2,a3,a4线性相关;即存在不全为0的4个数k1,k2,k3,k4使得k1*a1+k2*a2+k3*a3+k4*a4=0(注由于这里不好写下标,在此声明k1,k2,k3,k4为系数

设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,

=a1+a2+a3+a4得到特解为(1,1,1,1)0=a1-2a2+a3得到齐次解(1,-2,1,0)(只有这一个,因为A得秩是3,齐次解只能有4-3=1个)所以通解为(1,1,1,1)+α(1,-

设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明(1):a1能由a2,a3线性表示 (2):a4不

(1)向量组a2,a3,a4线性无关,说明a2,a3,也线性无关;又因为向量组a1,a2,a3线性相关,所以a1能由a2,a3线性表示(2)假如a4能由a1,a2,a3线性表示,则由于a1能由a2,a

设向量组a1,a2,a3,线性无关.证明:向量组a1+a2+a3,a2+a3,a3也线性无关

假设a1+a2+a3,a2+a3,a3线性相关,则k1(a1+a2+a3)+k2(a2+a3)+k3a3=0其中k1、k2、k3不全为0.化简成k1a1+(k1+k2)a2+(k1+k2+k3)a3=

设向量组a1,a2,a3线性无关.证明向量组a1+a3,a2+a3,a3也与线性无关.

证明:设k1(a1+a3)+k2(a2+a3)+k3a3=0得:k1a1+k2a2+(k1+k2+k3)a3=0由a1,a2,a3线性无关得k1=0,k2=0,k1+k2+k3=0所以有k1=k2=k

证明题:设向量组a1,a2,a3,线性无关,证明向量组a1+2a2,a2+2a3,a3+2a1线性无关

设k1,k2,k3使得k1(a1+2a2)+k2(a2+2a3)+k3(a3+2a1)=0(k1+2k3)a1+(2k1+k2)a2+(2k2+k3)a3=0a1,a2,a3线性无关所以k1+2k3=

设n维向量a1 a2线性无关a3 a4线性无关若a1 a2都分别与a3 a4正交 证明a1 a2,a3,a4线性无关

已知n维向量组A:a1,a2线性无关,b1,b2线性无关,且a1,a2分别与b1,b2正交,证明a1,a2,b1,b2线性无关设x1a1+x2a2+y1b1+y2b2=0,证明x1=x2=y1=y2=

线性代数证明题求助 设向量组a1,a2,a3线性无关,证明:a1+a2,a2-a3,a1-2a2+a3也线性无关.

设k1(a1+a2)+k2(a2-a3)+k3(a1-2a2+a3)=0(k1+k3)a1+(k1+k2-2k3)a2+(-k2+k3)a3=0因为向量组a1,a2,a3线性无关,所以k1+k3=0k

设向量a1,a2,a3线性无关,试证向量b1=a1+a2,b2=a1+a3,b3=a2+a3也线性无关.

反证法,假设他们线性相关,设个K值,则会得出a1.a2.a3也线性相关,与前提矛盾,证明完毕——自己试一下,个人觉得没必要把这个题目说的太透再问:能不能详细写一下过程?谢谢了再答:好吧,假设有不全为零

设向量组a1,a2,a3线性无关,试证b1=a2-a1,b2=a3-a2,b3=a1-a3线性相关

1+b2+b3=0这就可以说明b1,b2,b3是线性相关的

设向量组a1,a2,a3 线性无关,又向量组b1=a1+a2+a3 ,b2=a1+2a2-a3,b3=a1-a2+2a3

设k1b1+k2b2+k3b3=0,然后把b1=a1+a2+a3等都代进去,整理一下,证出k1,k2,k3都是0就可以了.

设a1,a2,a3,a4线性无关,求证a1+a2,a2+a3,a3+a4,a4+a1线性相关

经典老题因为(a1+a2)-(a2+a3)+(a3+a4)-(a4+a1)=0所以a1+a2,a2+a3,a3+a4,a4+a1线性相关.再问:这是我明天的考试题目~拜托您讲得清楚点么~~~再答:这是

设a1 a2 a3线性无关 若β可由a1 a2 a3线性表示,求证表达式是惟一的

设β=p1a1+p2a2+p3a3=q1a1+q2a2+q3a3得(p1-q1)a1+(p2-q2)a2+(p3-q3)a3=0.由a1,a2,a3线性无关知p1-q1=p2-q2=p3-q3=0.从

设a1,a2,a3,b均为n维非零列向量,a1,a2,a3线性无关且b与a1,a2,a3分别正交,试证明a1,a2,a3

令kb+k1a1+k2a2+k3a3=0两边用b做内积,得k[b,b]+k1[b,a1]+k2[b,a2]+k3[b,a3]=0因为b与a1,a2,a3分别正交,故[b,a1]=[b,a2]=[b,a

设向量组a1,a2,a3线性无关.证明:向量组a1-a2-2a3,a2-a3,a3也线性无关

设x(a1-a2-2a3)+y(a2-a3)+za3=0,则xa1+(-x+y)a2+(-2x-y+z)a3=0,向量组a1,a2,a3线性无关,∴x=0,-x+y=0,-2x-y+z=0,解得x=y

设向量a1,a2,a3线性相关,证明:向量a1+a2,a2+a3,a1+a3 线性相关

证明:因为向量组a1+a2,a2+a3,a1+a3可由a1,a2,a3线性表示所以r(a1+a2,a2+a3,a1+a3)

设矩阵A=(a1,a2,a3,a4)其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求

先用已知向量的列向量写出矩阵1011100101110101再利用初等行变换第一行乘以-1加到第二行101100-1001110101再利用初等行变换第三行乘以-1加到第四行101100-100111